

Development of the State of Warranty (SOW) for Electric Vehicles

Mikel Arrinda

13/06/2022

RED CERVERA – TRANSICIÓN ENERGÉTICA

This project has received funding from the research and innovation program of the Red Cervera under the grant agreement CER-20191002

Centro para el
Desarrollo
Tecnológico
Industrial

The sales of electric vehicles is increasing steadily a 40% each year

An inappropriate management of the warranty could lead to:

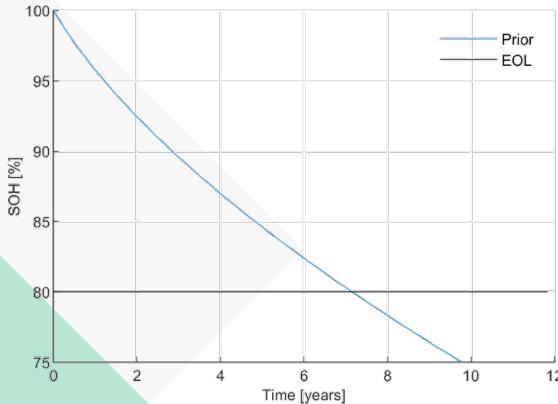
- Systematic replacement of battery systems under warranty.

Maintenance schedules of electric vehicles are complex.

- The maintenance activities of critical components are done in a preventive or predictive way.
- The maintenance activities of non-critical components are done in a reactive way.

A new qualitative meta-state: the **State Of Warranty** (SOW).

Scope: the battery system.


- It synthesizes the most relevant quantitative indicators (sub-states) of each of the maintenance methodologies in one merit.
- It allows to simplify the multi-maintenance methodology into a global and unique maintenance methodology.
- It provides the milestone to develop a synthesized platform for the multi-component maintenance.

1) REACTIVE

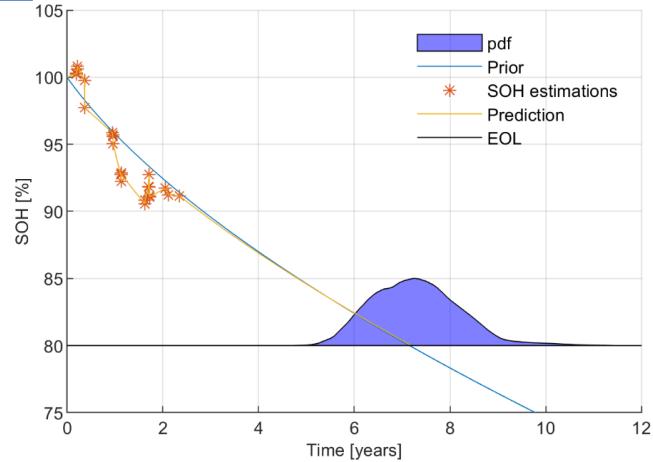
The prior or expectation

The already obtained knowledge about the electric vehicle itself before it starts working.

- The aging evolution.
- The warranty definition.

2) PREVENTIVE

SOH estimator


The SOH is the state of a component that describes its health status.

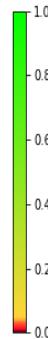
3) PREDICTIVE

RUL prognosis

The time [years] or kilometres the EV [battery] can still be operative

1) REACTIVE

Remaining warranty (RW)


Provide information about the closeness of the end of the stated warranty.

We propose 4 events of interest:

- 1) The beginning of warranty.
- 2) 5% of the total warranty remain available (advice).
- 3) 1% of the total warranty remain available (alarm).
- 4) The end of warranty.

Implementation:

A first order linear equation for the range 0 to 1.

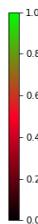
2) PREVENTIVE

Remaining health (RH)

This state has two objectives:

- Contextualized the SOH estimation to ease its interpretation.
- Show the closeness to the appearance of a sudden failure (in this study, the EOL).

We propose 3 events of interest:


- 1) The estimated SOH is equal or higher than the expected one at the present instant.
- 2) The SOH value that defines the EOL plus 3%.
- 3) The EOL.

Implementation:

Two piecewise-defined function built with first order linear equations for the range 0 to 1.

$SOH_{expected\ k} > SOH_{event2}$

$$RH_k = \begin{cases} 1 & SOH_k > SOH_{expected\ k} \\ a_1 + \Delta SOH_{1\ k} \cdot b_1 & SOH_{event2} > SOH_k \geq SOH_{expected\ k} \\ a_2 + \Delta SOH_{2\ k} \cdot b_2 & EOL > SOH_k \geq SOH_{event2} \\ 0 & SOH_k < EOL \end{cases}$$

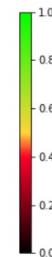
$SOH_{expected\ k} < SOH_{event2}$

$$RH_k = \begin{cases} 1 & SOH_k > SOH_{expected\ k} \\ a_3 + \Delta SOH_{3\ k} \cdot b_3 & EOL > SOH_k \geq SOH_{expected\ k} \\ 0 & SOH_k < EOL \end{cases}$$

3) PREDICTIVE

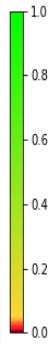
Remaining useful warranty (RUW)

Inform the vehicle manufacturer about the warranty state way before its non-fulfilment

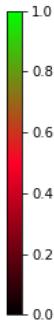

We propose 4 events of interest:

- 1) The theoretical remaining useful life based on the expectations.
- 2) The RUL defined on the warranty.
- 3) The non-compliance of the warranty in 80% of the defined warranty period.
- 4) The non-compliance of the warranty in half of the defined warranty period (+2 replacements).

Implementation:


A piecewise-defined function built with first order linear equations for the range 0 to 1.

$$RUW_k = \begin{cases} 1 & lifespan_k > lifespan_{event1} \\ a_1 + lifespan_k \cdot b_1 & lifespan_{event1} > lifespan_k \geq lifespan_{event2} \\ a_2 + lifespan_k \cdot b_2 & lifespan_{event2} > lifespan_k \geq lifespan_{event4} \\ 0 & lifespan_k < lifespan_{event4} \end{cases}$$

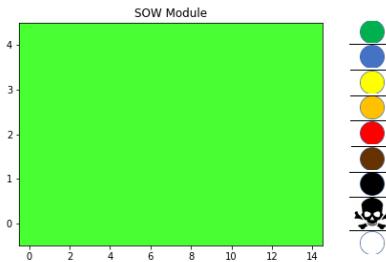
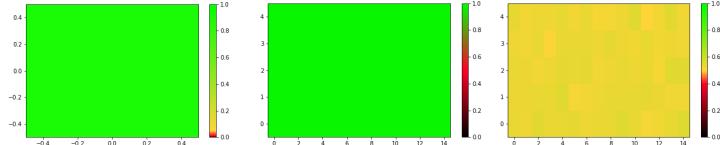


QUANTITATIVE

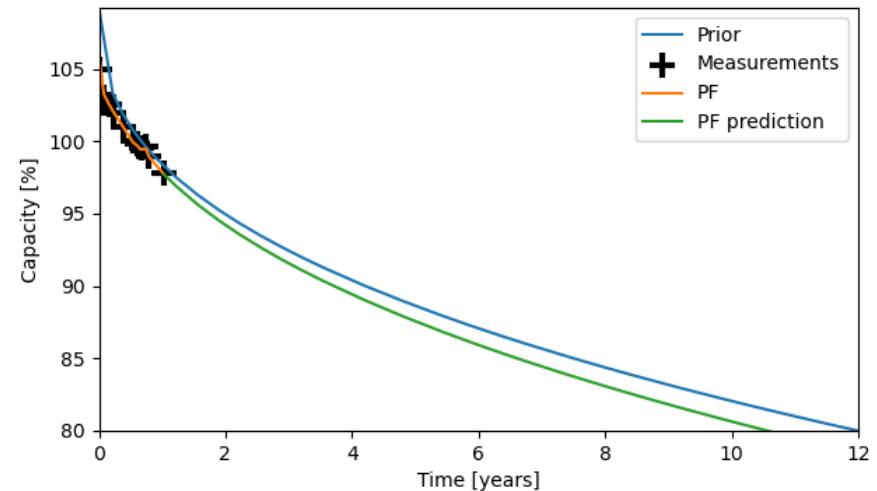
1) REACTIVE

2) PREVENTIVE

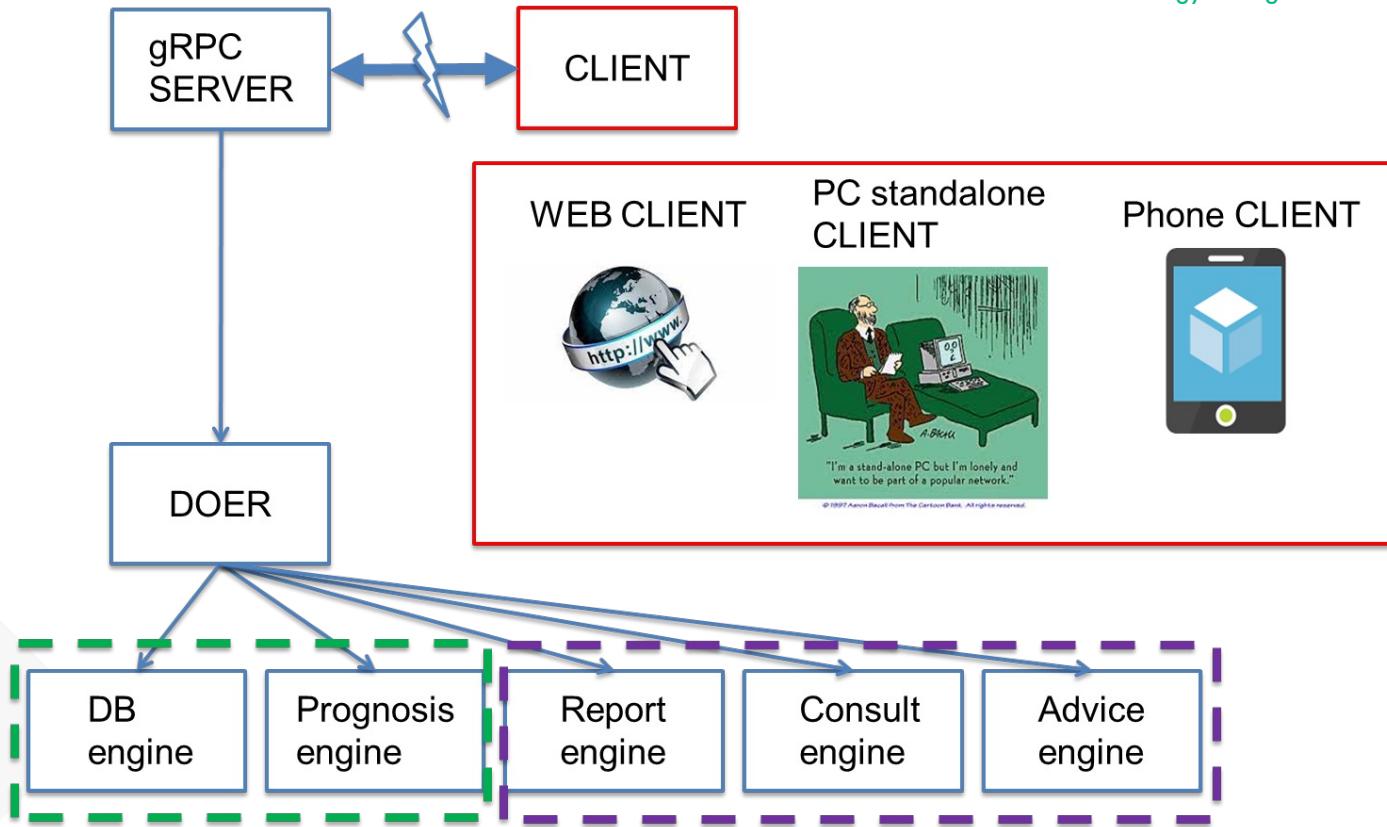
3) PREDICTIVE

QUALITATIVE


SOW	RW	RH	RUW	Severity Description
	>0.05	>0.75	>0.5	The warranty fulfilment level is correct.
	<0.05	>0.75	>0.5	The warranty fulfilment level is correct, but the end of warranty is close.
	-	>0.75	0.5> RUW >0.4	ATTENTION! Predicted 1 additional replacement. Early advice.
	-	0.75>RH>0.5	0.5> RUW >0.4	ATTENTION! Predicted 1 additional replacement. Middle advice.
	-	0.75>RH>0.5	0.4> RUW >0	ATTENTION! Predicted 1 additional replacement. Late advice.
	-	0.5>RH>0	0.4> RUW >0	DANGER! Predicted 1 additional replacement. Irreversible damages.
	-	-	0	DANGER! Predicted 2 additional replacement.
	-	0	-	DEATH! The battery has reached the EOL.
	¿?	¿?	¿?	Undefined scenario. Something unexpected is happening.

Results


1) REACTIVE 2) PREVENTIVE 3) PREDICTIVE

PROGNOSIS

Execution & exploitation

