

Li-ion Battery SoC estimation algorithm with Neural Networks and Transfer Learning using synthetic training data

Markel Azkue^{1,2,*}, M. Lucu¹, L. Oca², E. Martinez-Laserna¹, U. Iraola²

¹ Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA). Pº J.M.

Arizmendiarrieta, 2, 20500 Arrasate-Mondragón, Spain

² Mondragon Unibertsitatea, Department of Electronics and Computer Science, 20120 Hernani, Spain

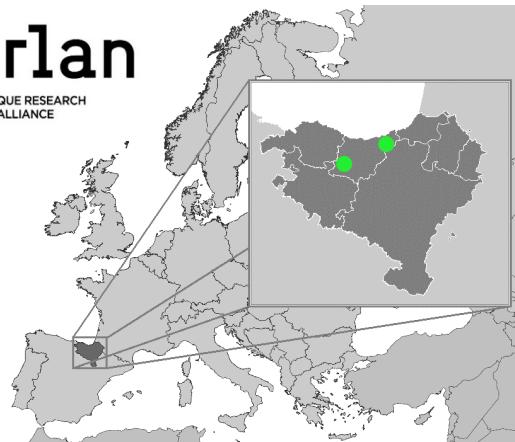
13-06-2022

WHERE
TECHNOLOGY
IS AN ATTITUDE

Markel Azkue

Energy Storage and Management

✉ mazkue@ikerlan.es


📞 +34 607 68 47 75

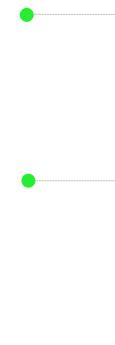
LinkedIn: www.linkedin.com/in/markel-azkue

Website: www.ikerlan.es

ikerlan

MEMBER OF BASQUE RESEARCH
& TECHNOLOGY ALLIANCE

3 research focuses aligned with
our 3 areas of expertise


ENERGY
AND POWER
ELECTRONICS

ELECTRONICS,
INFORMATION,
AND
COMMUNICATION
TECHNOLOGIES

MECHATRONIC
AND AUTOMATION

> 300
people

- 1 Introduction
- 2 SoC Estimation Algorithm
- 3 Dataset
- 4 Methodology
- 5 Results and Discussion
- 6 Conclusions and Future Work

- 1** **Introduction**
- 2** SoC Estimation Algorithm
- 3** Dataset
- 4** Methodology
- 5** Results and Discussion
- 6** Conclusions and Future Work

BMS needed for safe use of Li-ion batteries

WHY?

- Batteries will fail if they over-charge/over-discharge
- Batteries will fail if they operate outside safe temperature range
- Batteries will fail if an over-current is applied

BMS needed for safe use of Li-ion batteries

WHY?

- Batteries will fail if they over-charge/over-discharge
- Batteries will fail if they operate outside safe temperature range
- Batteries will fail if an over-current is applied

FUNCTIONS

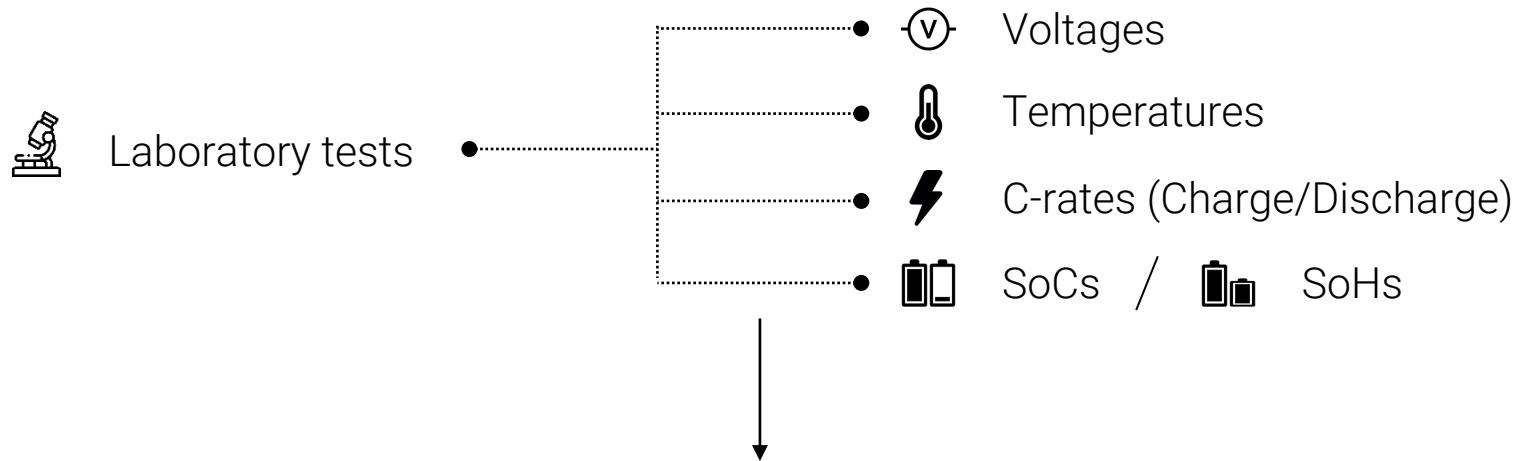
- Monitoring measurable variable: V, I, T
- Monitoring non-measurable states: SoC, SoH and SoP
- Advanced functions: cell balancing, performance optimisation...

BMS needed for safe use of Li-ion batteries

WHY?

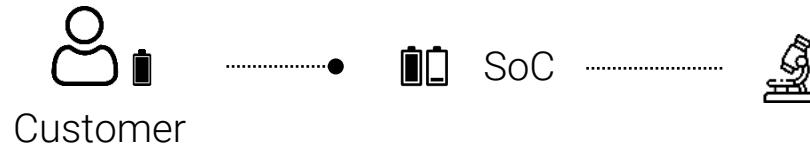
- Batteries will fail if they over-charge/over-discharge
- Batteries will fail if they operate outside safe temperature range
- Batteries will fail if an over-current is applied

FUNCTIONS

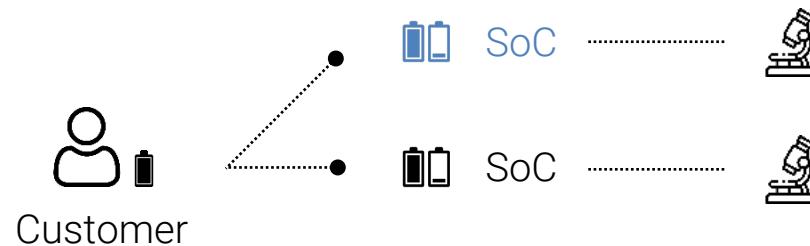

- Monitoring measurable variable: V, I, T
- **Monitoring non-measurable states: SoC, SoH and SoP**
- Advanced functions: cell balancing, performance optimisation...

SoC is not a measurable variable, so it must be estimated

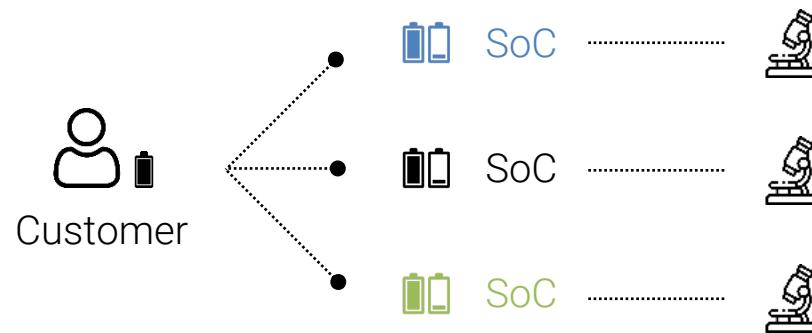
VARIABLES INFLUENCING THE ESTIMATION


- ⎓ v Battery Voltage
- 🌡 Temperature
- ⚡ C-rate (Charge/Discharge)
- 🔋 SoH

CREATING A SoC ESTIMATION ALGORITHM



To create one SoC
algorithm for one battery


CREATING A SoC ESTIMATION ALGORITHM

CREATING A SoC ESTIMATION ALGORITHM

CREATING A SoC ESTIMATION ALGORITHM

CREATING A SoC ESTIMATION ALGORITHM

CREATING A SoC ESTIMATION ALGORITHM

CREATING A SoC ESTIMATION ALGORITHM

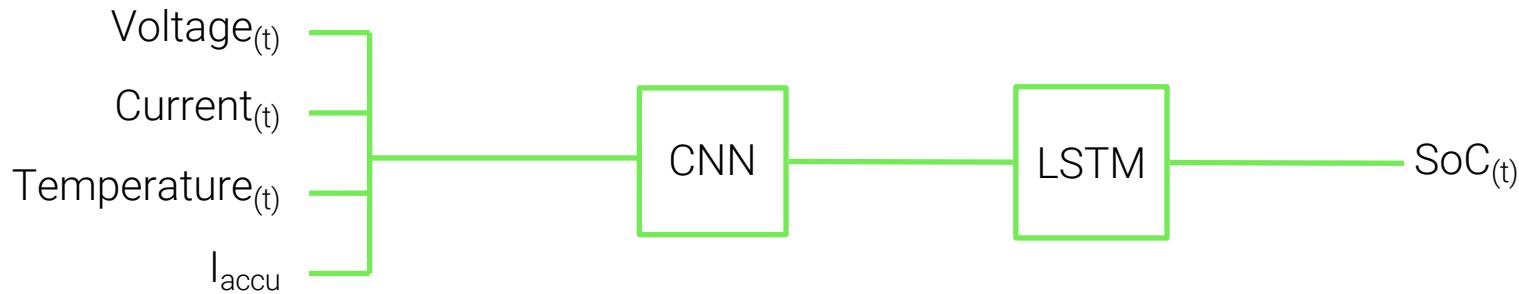
Can the required number of tests be reduced? How?

CREATING A SoC ESTIMATION ALGORITHM

Can the required number of tests be reduced? How?

Learning from in-field data, adaptability

GOAL

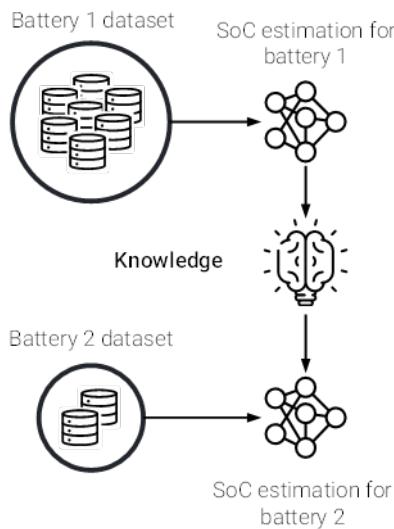

To **develop and validate** a **SoC estimator** that has the **ability to adapt** to new lithium-ion battery **chemistries**, thus **minimising the cost and time required** compared to developing analogous algorithms from scratch.

Using as much knowledge or data generated from other batteries and applications to improve the state estimator while achieving more robust estimator.

- 1 Introduction
- 2 **SoC Estimation Algorithm**
- 3 Dataset
- 4 Methodology
- 5 Results and Discussion
- 6 Conclusions and Future Work

SoC ESTIMATION ALGORITHM BASED ON:

CNN


Capacity to automatically detect the important features

LSTM

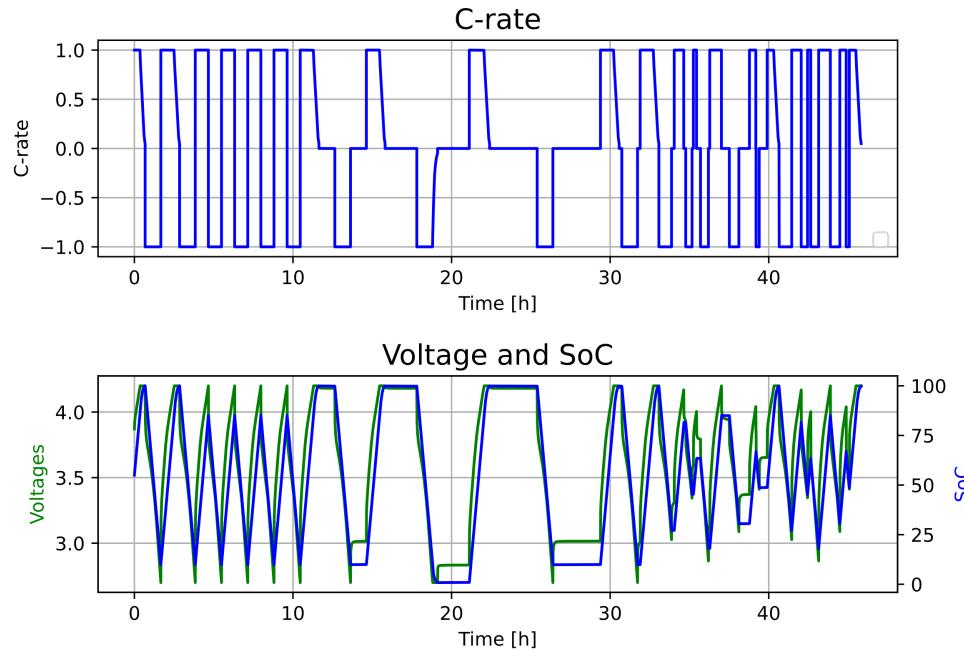
- Particularly adequate for time-series data
- Extract the temporal relationships of the timeseries that make up both the input and output data

SoC ESTIMATION ALGORITHM BASED ON:

Transfer Learning (TL)

TL takes advantage of the data and prior knowledge generated from previously tested or deployed cell references

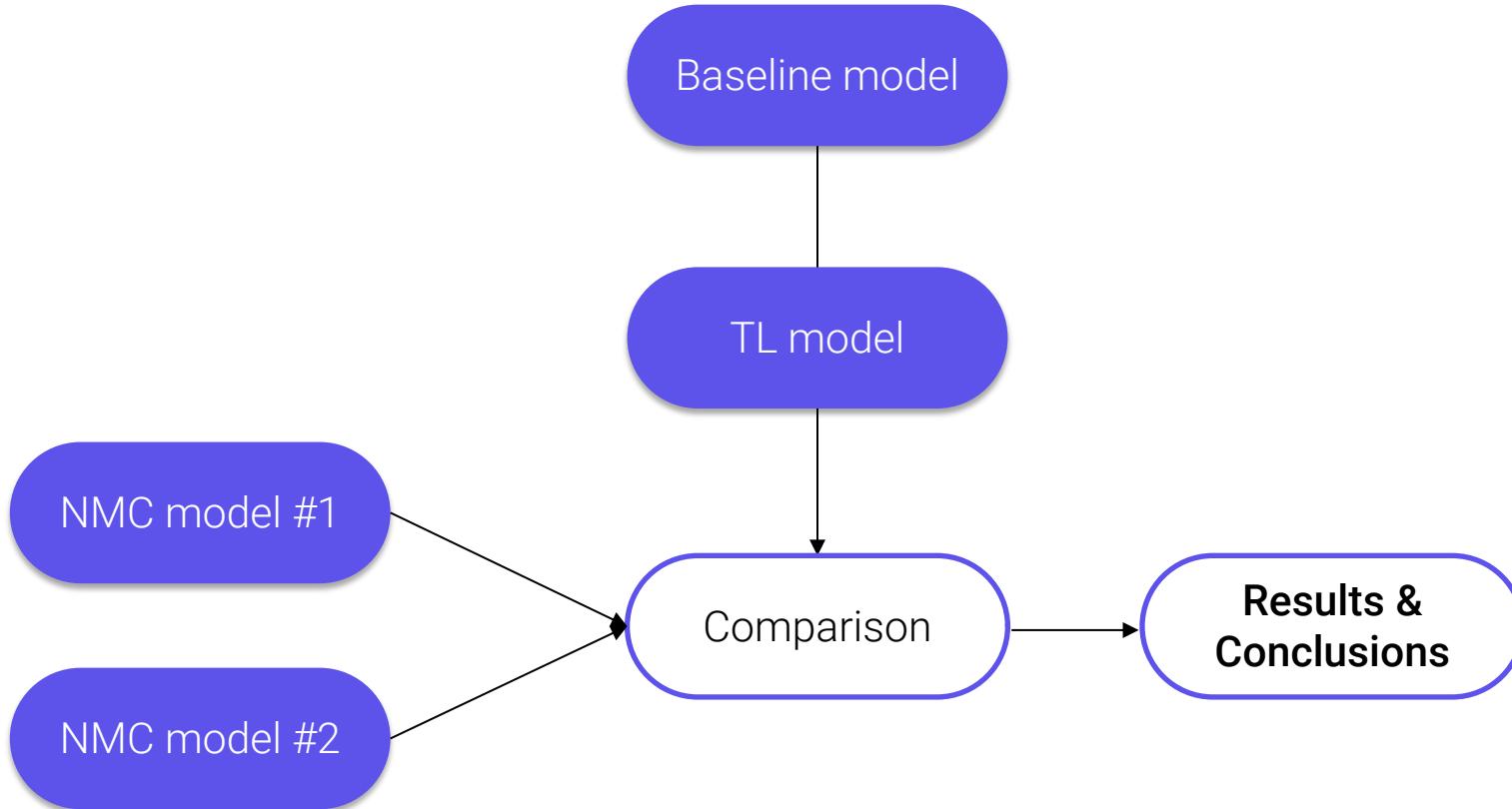
1. Train the algorithm with data obtained from a previously tested and/or deployed cell reference
2. Retrain the ANN using a reduced amount of data from the new cell reference


- 1 Introduction
- 2 SoC Estimation Algorithm
- 3 **Dataset**
- 4 Methodology
- 5 Results and Discussion
- 6 Conclusions and Future Work

DOYLE CELL DATASET

Electrochemical model

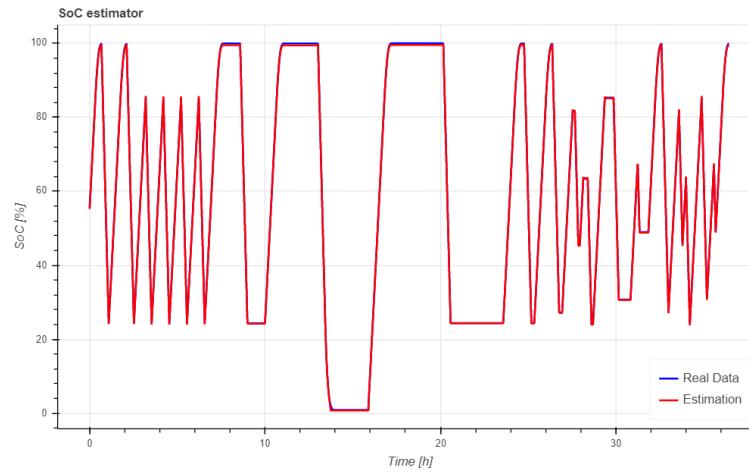
Temperature	C-rate DCH	C-rate CHA
45 °C		
25 °C	0.5 – 1 – 2 – 4	0.5 - 1
10 °C		
0 °C		


NMC 58Ah CELL DATASET

Test*	CHA C-rate	DCH C-rate	Temperatures
Capacity	1C	1C	10 – 25 – 45 °C
HPPC	0.5C – 3C	0.5C – 3C	10 – 25 – 45 °C
Quasi-OCV	0.05C	0.05C	10 – 25 – 45 °C
Designed profile + WLTC	0.5C – 3C	0.5C – 3C	25 °C

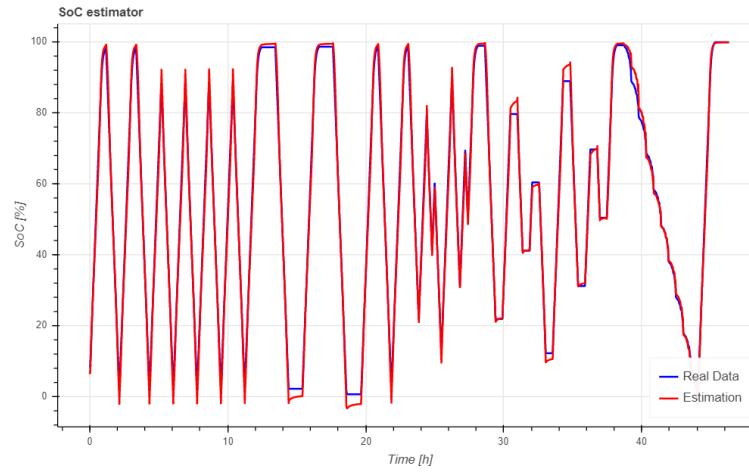
* Three different cells tested in each condition to ensure the repeatability of the results

- 1 Introduction
- 2 SoC Estimation Algorithm
- 3 Dataset
- 4 Methodology**
- 5 Results and Discussion
- 6 Conclusions and Future Work


- 1 Introduction
- 2 SoC Estimation Algorithm
- 3 Dataset
- 4 Methodology
- 5 **Results and Discussion**
- 6 Conclusions and Future Work

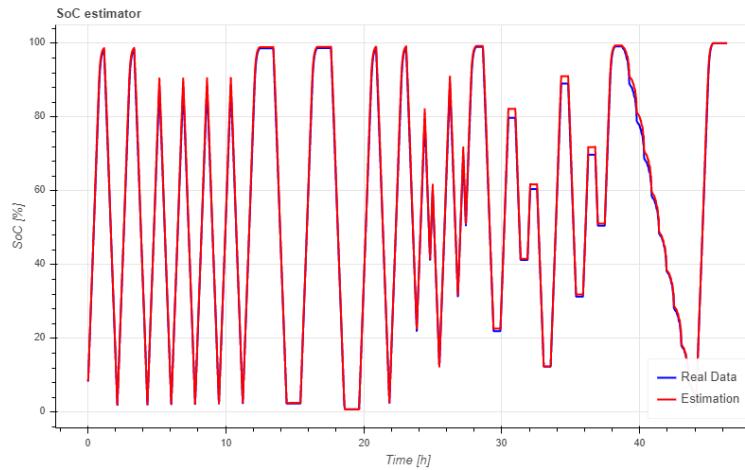
BASELINE MODEL

Trained with Doyle cell dataset


Dataset	Conditions
Training data	0 °C - 0.5C CHA - 0.5C DCH
	10 °C - 0.5C CHA - 0.5C DCH
	10 °C - 1C CHA - 4C DCH
	25 °C - 0.5C CHA - 0.5C DCH
	25 °C - 1C CHA - 1C DCH
Validation data	25 °C - 1C CHA - 4C DCH
	45 °C - 1C CHA - 4C DCH
Test data	0 °C - 1C CHA - 2C DCH
	10 °C - 1C CHA - 1C DCH
Test data	0 °C - 1C CHA - 1C DCH
	10 °C - 1C CHA - 2C DCH
	25 °C - 1C CHA - 2C DCH
	45 °C - 1C CHA - 2C DCH

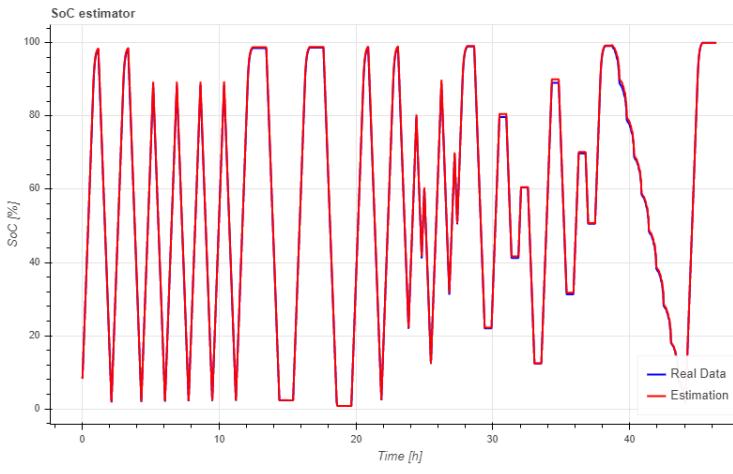
Dataset	Mean Absolut Error (MAE)	Maximum Error
Training data	0.113%	1.435%
Validation data	0.097%	1.512%
Test data	0.077%	1.459%

NMC 58Ah CELL MODEL #1


Dataset	Conditions	Tests
Training data	CELL1: 25 °C	
	CELL2: 10 °C	
Validation data	CELL3: 25 °C	Capacity
	CELL4: 45 °C	Quasi-OCV
	CELL5: 10 °C	HPPC
	CELL6: 10 °C	
	CELL7: 25 °C	
Test data	CELL8: 45 °C	
	CELL9: 45 °C	
	CELL10: 25 °C	Designed profile

Dataset	Mean Absolut Error (MAE)	Maximum Error
Training data	1.497%	16.787%
Validation data	2.653%	17.458%
Test data	3.168%	18.369%

NMC 58Ah CELL MODEL #2


Dataset	Conditions	Tests
Training data	CELL1: 25 °C CELL5: 10 °C CELL8: 45 °C	
Validation data	CELL2: 10 °C CELL3: 25 °C CELL4: 45 °C	Capacity Quasi-OCV HPPC
Test data	CELL6: 10 °C CELL7: 25 °C CELL9: 45 °C CELL10: 25 °C	Designed profile

Dataset	Mean Absolut Error (MAE)	Maximum Error
Training data	0.487%	2.083%
Validation data	0.486%	2.102%
Test data	0.494%	2.504%

TL MODEL

Dataset	Conditions	Tests
Training data	CELL1: 25 °C	
Validation data	CELL2: 10 °C CELL3: 25 °C CELL4: 45 °C	Capacity Quasi-OCV HPPC
Test data	CELL5: 10 °C CELL6: 10 °C CELL7: 25 °C CELL8: 45 °C CELL9: 45 °C CELL10: 25 °C	Designed profile

Dataset	Mean Absolut Error (MAE)	Maximum Error
Training data	0.251%	4.045%
Validation data	0.243%	4.086%
Test data	0.243%	3.411%

COMPARISON OF THE RESULTS

Model	Dataset	Mean Absolut Error (MAE)	Maximum Error
Model trained with reduced training data (NMC model #1)	Train	1.497%	16.787%
	Validation	2.653%	17.458%
	Test	3.168%	18.369%
Model trained with increased training data (NMC model #2)	Train	0.487%	2.083%
	Validation	0.486%	2.102%
	Test	0.494%	2.504%
TL model	Train	0.251%	4.045%
	Validation	0.243%	4.086%
	Test	0.243%	3.411%

- 1 Introduction
- 2 SoC Estimation Algorithm
- 3 Dataset
- 4 Methodology
- 5 Results and Discussion
- 6 Conclusions and Future Work**

- SoC estimation algorithm was developed using a neural network composed of a **CNN layer** and a **LSTM layer**. Network was trained with **four different training datasets**, leading to **four different models**
- **Benefits** of the proposed TL-based approach were highlighted:
 - Needed data to train the algorithm significantly reduced
 - Accuracy improved
 - Compared to analogue algorithm developed from scratch error reduced in 50% and required laboratory data reduced by 40%
- Degradation of the cell not taken into account
- Analysis of the behaviour of the algorithm with different chemistries as LFP to be done

THANK YOU

IKERLAN

P.º José María Arizmendiarrieta, 2 - 20500 Arrasate-Mondragón

T. +34 943712400 F. +34 943796944

WHERE
TECHNOLOGY
IS AN ATTITUDE

ikerlan
MEMBER OF BASQUE RESEARCH
& TECHNOLOGY ALLIANCE