

A double-layer data-driven motion planning and control method for parallel parking

Author
Department
University
E-mail

Shaoyu Song *(Presenter), Hui Chen
School of Automotive Studies
Tongji University, Shanghai, 201804, China
s.song@tongji.edu.cn

1

Introduction

2

Preliminaries

3

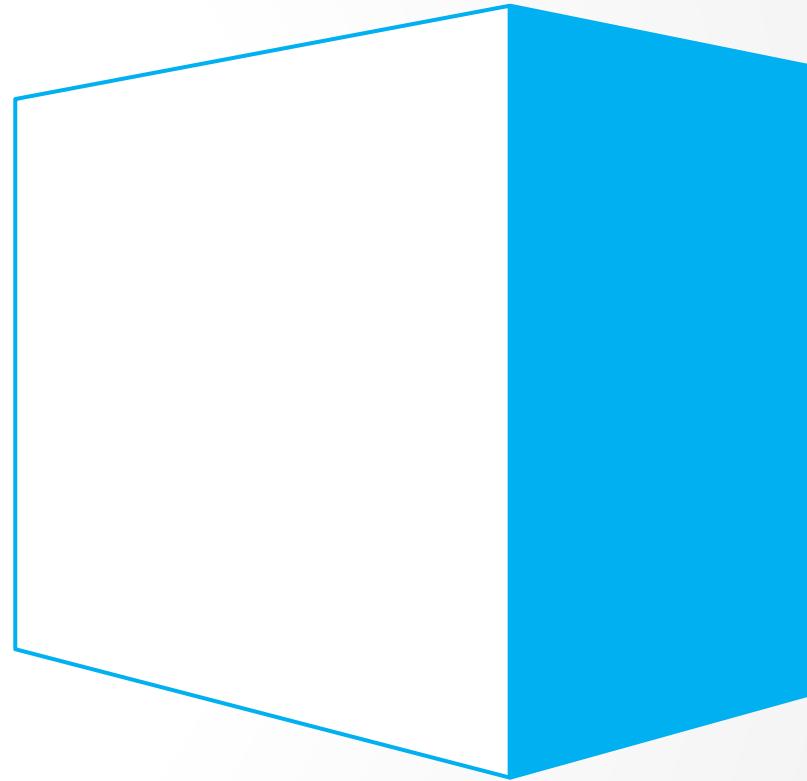
Double-layer data-driven parking

4

Comparison of simulation

5

Summary



Research motivation

Related Work

Automated Parking System(APS) for Wireless Power Transfer

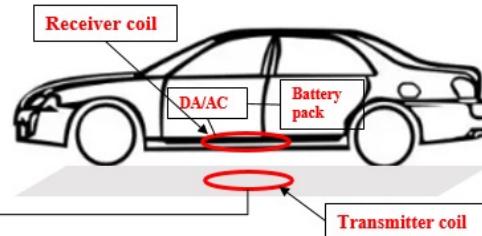
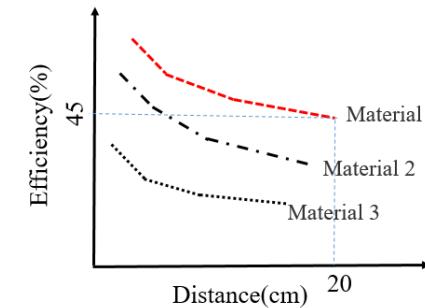


Diagram of a typical wireless power transfer



Power transfer efficiency for different coil materials[2]

Park and Charge: vehicles are parked 96 % of their time

Critical Needs: high precision of parking position

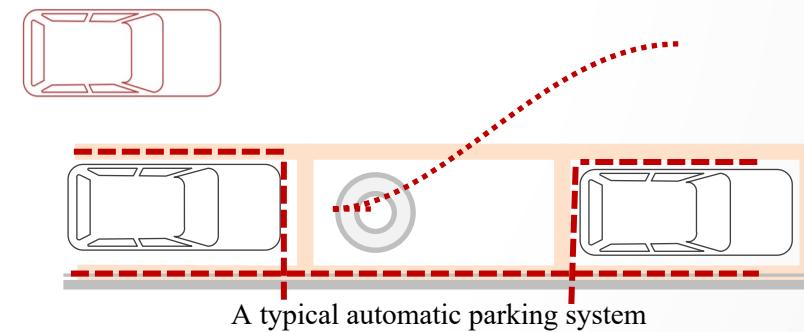
Modules: slot detection, path planning, path following control, ego-vehicle's posture estimation, and chassis control

Directly related to **parking accuracy:** planning, following control

Wireless Power Transfer: transmission of electrical energy without wires as a physical link

Fewer wires, increasing the mobility, convenience, and safety

Key Challenge: technical challenges such as the **low transfer efficiencies** as the distances increase made this WPT develop very slowly



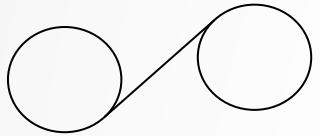
A typical automatic parking system

[2] Machura P, Li Q. A critical review on wireless charging for electric vehicles [J]. Renewable & Sustainable Energy Reviews, 2019, 104: 209-234.

Related work

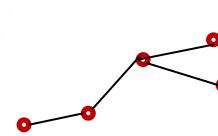
Conventional method

Path planning



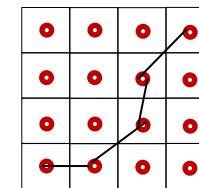
Circular arc, line, spline curve...

Curve-based method



RRT, RRT*, BiRRT,...

Sampling-based method



A*, D*,...

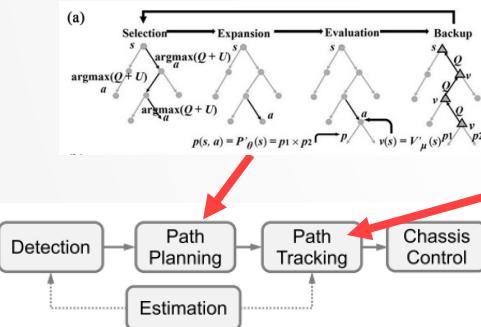
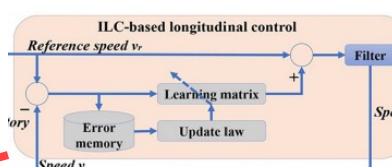
Search-based method

Advantage: simple, easy to implement

Disadvantage: parameter adjustment rely on experience

AI-based method:

Characteristic: high on-line computational efficiency, working condition self-adaptation, parameter self-adjustment



In previous study:

motion planning: data-driven learnable Monte Carlo tree search(MCTS)-**open-loop control**

tracking control: iterative learning control and **MPC-could not alter the trajectory**

How could the two parts work together to further improve performance?

[1] Song S Y, Chen H, Sun H W, et al. Time-Optimized Online Planning For Parallel Parking With Nonlinear Optimization and Improved Monte Carlo Tree Search [J]. Ieee Robotics and Automation Letters, 2022, 7(2): 2226-2233.

[2] Song S Y, Zhang S K. Data-driven trajectory-tracking in automated parking system via iterative learning compensation and model predictive control [J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering.

A double-layer data-driven motion planning and control method for parallel parking

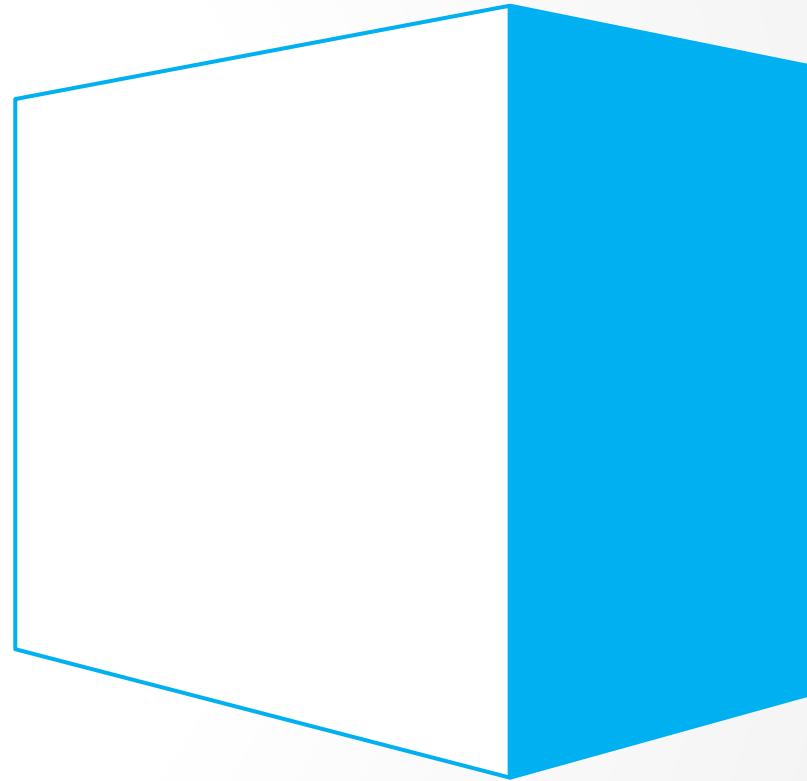
1 Introduction

2 Preliminaries

3 Double-layer data-driven parking

4 Comparison of simulation

5 Summary



Monte Carlo Tree Search

Model Predictive Control & Iterative Learning Control

Markov decision process

- A mathematical model described by a five tuple $\langle S, A, P, r, \mu \rangle$
- ✓ state space- S :

- vehicle state $(x, y, \theta, v, \delta)$

- ✓ State transition function - P :

- vehicle single track

- How to control the speed and steering angle given vehicle state?

- ✓ action space- A :

- Discrete steering wheel angle increment

- Discrete speed increment

- ✓ discount factor - μ

- Reflect the ability of the algorithm

to observe the future state

- ✓ reward function- r :

$$\blacksquare r(s_k, a_k) = R_y + R_\theta + R_a + R_{safe}$$

$$R_y = \frac{-20000}{1+e^{-c_1 \times |y-y_t|}} + 20000, R_\theta = \frac{-20000}{1+e^{-c_2 \times |\theta-\theta_t|}} + 20000,$$

$$R_a = c_3 \times \sum_{i=1}^k |a_i - a_{i-1}|, R_{safe} = \{0, -10000\}$$

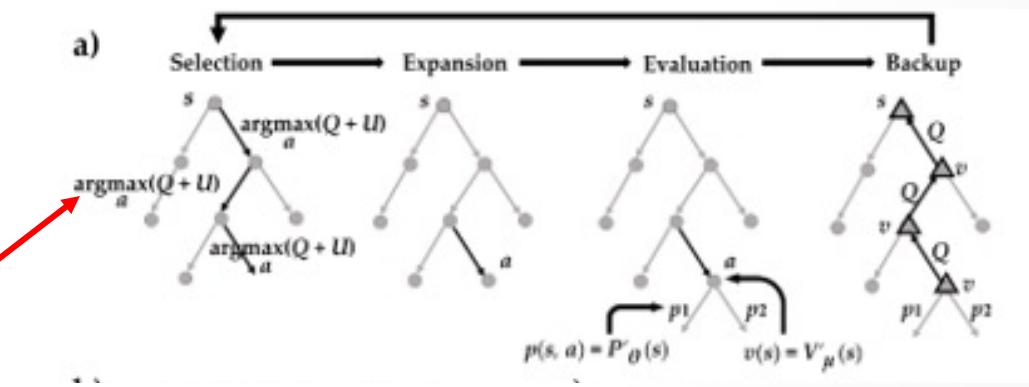
Monte Carlo tree search

$$q(s, a) \leftarrow \frac{1}{N(s, a)} \sum_{i=1}^{N(s)} I_i(s, a) z_i$$

- Iteratively performs 4 steps: selection - expansion - evaluation - backup
- Tree policy:

$$a_t(s) = \operatorname{argmax}_a (q(s, a) + c_{puct} P(s, a)^\mu \sqrt{\frac{\sum_b N(s, b)}{1 + N(s, a)}})$$

$$\pi(a|s) = \frac{N(s, a)^{1/T_{em}}}{\sum_b (N(s, b)^{1/T_{em}})}$$



Monte Carlo Tree Search

Model Predictive Control

- General form

$$\begin{aligned} \min_{U_t, \xi_{t+1}, \xi_{t+2}, \dots, \xi_{t+Np}, t} \quad & J_{Nc}(\xi_t, U_t) \\ \text{s.t.} \quad & \xi_{k+1,t} = f(\xi_t, u_{k,t}), k = t, \dots, N-1 \\ & \xi_{k,t} \in X \\ & u_{k,t} \in U \end{aligned}$$

Control Nc steps (perform the first), predict Np steps

- Tracking control

$$\begin{aligned} J(\xi(t), u(t-1), \Delta U(t)) = & \sum_{i=1}^{Np} \frac{\|\Psi_t \xi(t) + \theta_t \Delta U(t)\|_Q^2}{Q} + \sum_{i=1}^{Nc} \frac{\|\Delta U(t+i|t)\|_R^2}{R} + \rho \varepsilon^2 \\ u_{\min}(t+k) \leq u(t+k) \leq u_{\max}(t+k), \\ \Delta u_{\min}(t+k) \leq \Delta u(t+k) \leq \Delta u_{\max}(t+k) \end{aligned}$$

Iterative Learning Control

$$x^l_{k+1} = A^l x^l_k + B^l u^l_k, \quad y^l_k = C^l x^l_k$$

Define q -coefficient matrix $\mathbf{x}^l_{k+1} = \mathbf{q}^l \mathbf{x}^l_k$, obtain $x^l_{k+1} = (q^l I - A^l)^{-1} u^l_k$

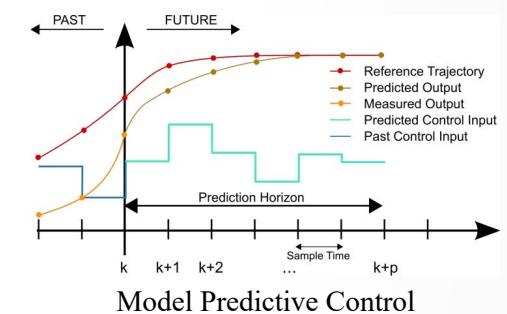
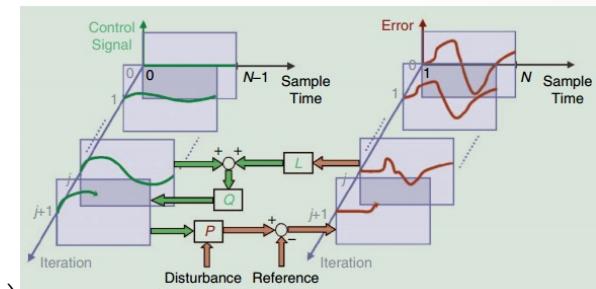
$$y^l_{jk} = P^l(q^l) u^l_{jk} + C^l (A^l)^k x^l_0, \quad P^l(q^l) \equiv C^l (q^l I - A^l)^{-1} B^l$$

Initial state 0

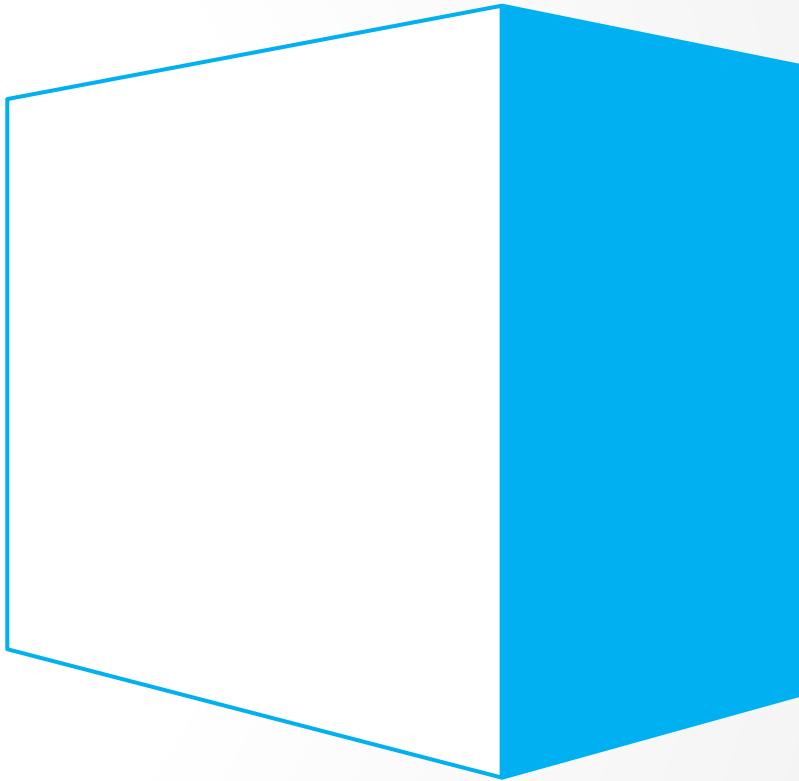
$$\begin{bmatrix} y^l_{j1} \\ y^l_{j2} \\ \vdots \\ y^l_{jN} \end{bmatrix} = \begin{bmatrix} P^l_{1,1} & 0 & \dots & 0 \\ P^l_{2,1} & P^l_{1,1} & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ P^l_{N,1} & P^l_{N-1,1} & \dots & P^l_{1,1} \end{bmatrix} \begin{bmatrix} u^l_{j0} \\ u^l_{j1} \\ \vdots \\ u^l_{jN-1} \end{bmatrix} \quad p_{mk} = \begin{cases} 0, & m < k \\ C^l B^l, & m = k \\ C^l A^l_{m-1} \dots A^l_k B^l_k, & m > k \end{cases}$$

Control law: $u^l_{j+1,k} = Q^l(u^l_{j,k} + L^l e^l_{j,k+1})$

$$\begin{aligned} Q^l_{opt} &= \left((P^l)^T T_{LG} P^l + R_{LG} + S_{LG} \right)^T u^l + \left((P^l)^T T_{LG} P^l + S_{LG} \right) \\ L^l_{opt} &= \left((P^l)^T T_{LG} P^l + S_{LG} \right)^T (P^l)^T T_{LG} \end{aligned}$$



- 1** Introduction
- 2** Preliminaries
- 3** Double-layer data-driven parking
- 4** Comparison of simulation
- 5** Summary



Overview

- Two parts: upper level + lower level

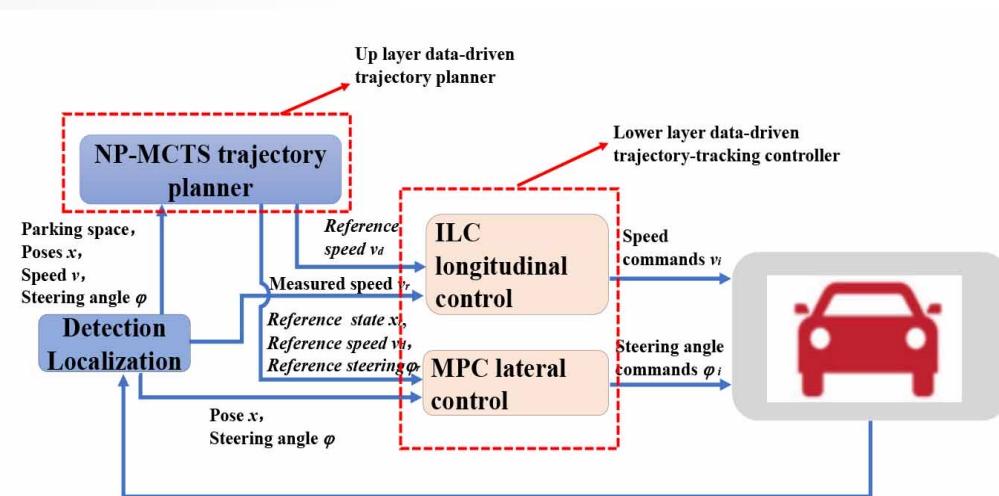


Figure 2: Overall diagram of the parking motion planning and trajectory following control system

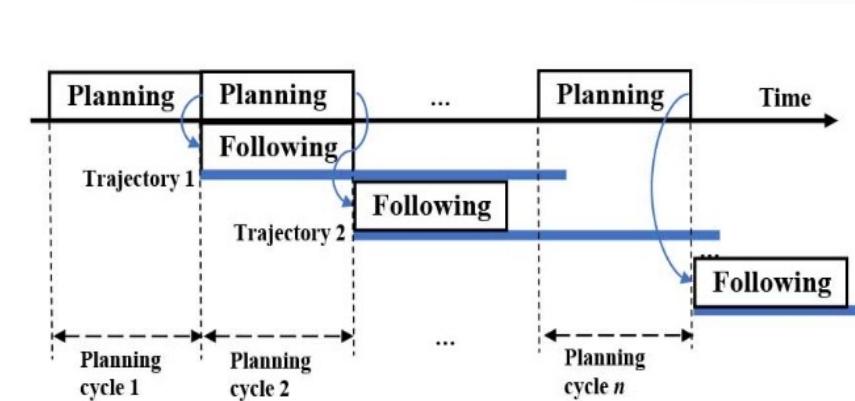


Figure 3: Iterative cycle, the vehicle and parking space information is our root model that is different from [18]

Lower-level data-driven learning control

- Online trajectory search+ trajectory following control

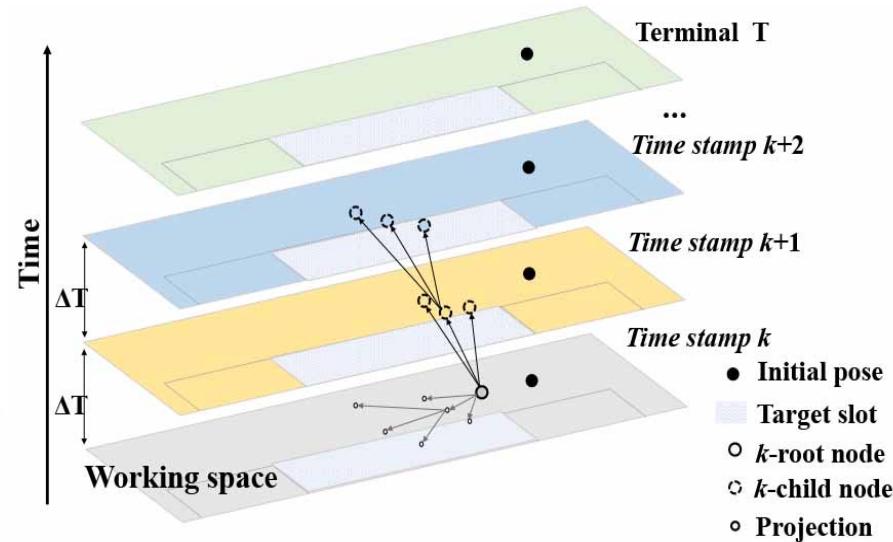


Figure 4: Search in spatiotemporal space in MCTS

Speed compensating

- **Step 1: learn**

- Obtain matrix Q and L
- Collect error data

$$\begin{bmatrix} e_{j,1}^l \\ e_{j,2}^l \\ \dots \\ e_{j,N}^l \end{bmatrix} = \begin{bmatrix} y_{d,1}^l \\ y_{d,2}^l \\ \dots \\ y_{d,N}^l \end{bmatrix} - \begin{bmatrix} y_{j,1}^l \\ y_{j,2}^l \\ \dots \\ y_{j,N}^l \end{bmatrix}$$

- Update control law

$$u_{j+1,k}^l = Q^l(u_{j,k}^l + L^l e_{j,k+1}^l)$$

- Collect error data

...

- **Step 2: online test**

- The length of the commands N is different in different parking position

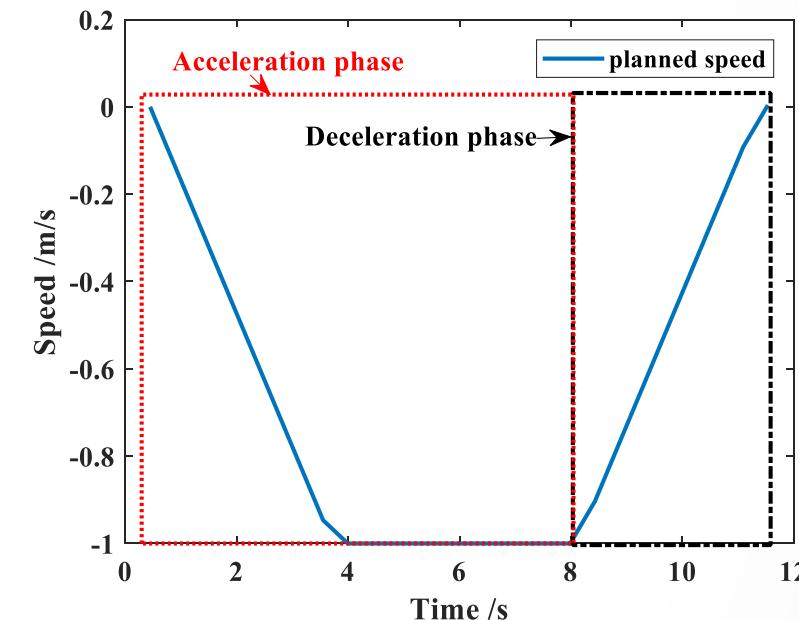
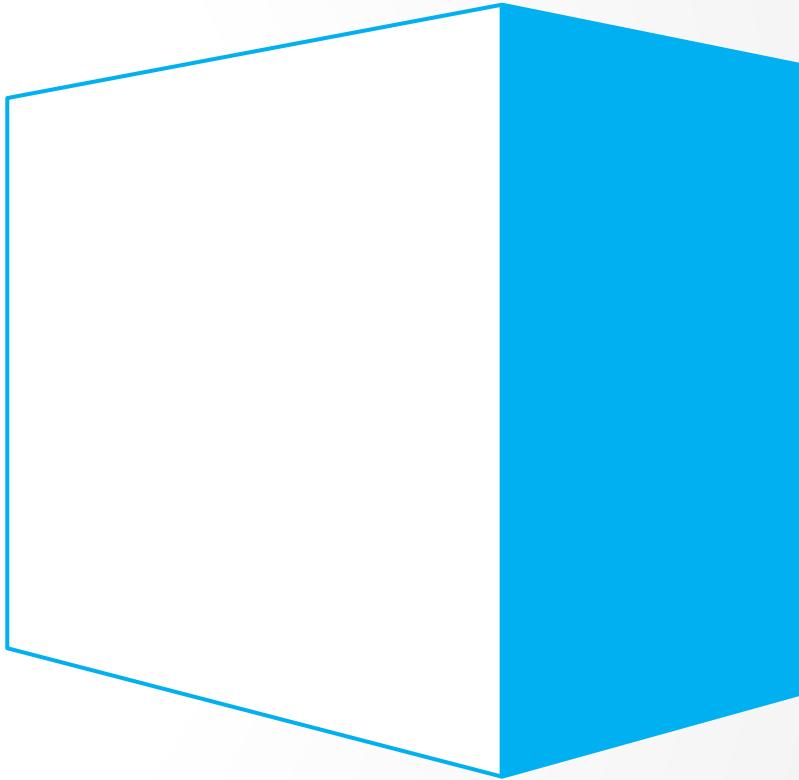


Figure 5: Phases of the speed during the parking

- 1 Introduction
- 2 Preliminaries
- 3 Double-layer data-driven parking
- 4 Comparison of simulation
- 5 Summary



Test conditions

Verification of lower and up layer

Adaptability to different conditions

Test conditions

Table 1: Vehicle and controller parameters

Item	Value	Item	Value
Vehicle length	3.569 m	Front overhang	0.72 m
Vehicle width	1.551 m	Rear overhang	0.54 m
Wheelbase	2.305 m	Trans. ratio	16.68
Vehicle length	3.569 m	Front overhang	0.72 m
Steering -MPC	400 °/s	Q weight -MPC	$\text{diag}(1, 0.1, 2)$
Prediction -MPC	20 steps	R weight-MPC	$1.5 \times I_{N_c}$
Control -MPC	15 steps	T_{LG} -LQR	$1 \times I_{N \times N}$
Relaxation -MPC	5	R_{LG} -LQR	$0.1 \times I_{N \times N}$
		S_{LG} -LQR	$0.01 \times I_{N \times N}$

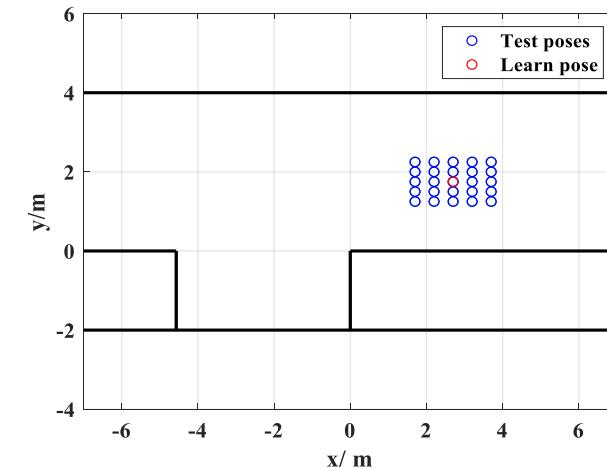


Figure 6: Initial positions of training in the double-layers data driven method, where the data in circles are used in motion planning layers and red circle is used to learn speed compensate

Test conditions

Verification of lower and up layer

Adaptability to different conditions

Verification of lower layer

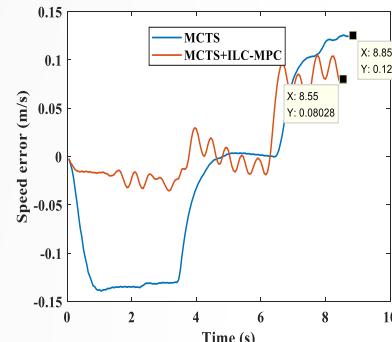


Figure 7: Comparison of speed following errors at (1.7 m, 1.25 m, 0°)

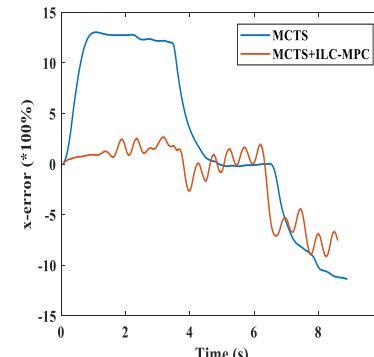
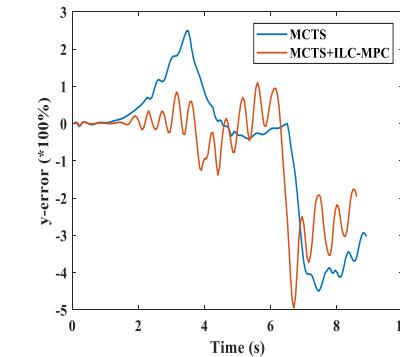
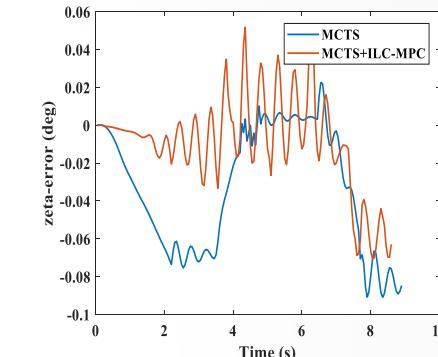


Figure 8: Comparison of trajectory-following control errors at (1.7 m, 1.25 m, 0°): (a) x-coordinate; (b) y-coordinate, and (c) θ



Verification of overall system

Table 2: Statistical results of parking process in the training poses, 25 trials

	Item	Open-loop	With tracking
Y errors/ m	Mean	0.010	0.016
	Max	0.055	0.114
	Min	9.79e-05	0.003
	Std.	0.015	0.023
θ errors/ °	Mean	1.137	1.185
	Max	1.318	1.327
	Min	0.984	1.013
	Std.	0.091	0.090

Gear Changes times	Mean	2.00	2.00
	Max	2	2
Time/ s	Min	2	2
	Std.	0.00	0.00
Effective rate	Mean	16.904	16.9
	Std.	0.715	1.11
72%			

✓ Final parking errors of open-loop control is more stable and smaller

✓ Tracking control is beneficial to the time and control errors during the parking

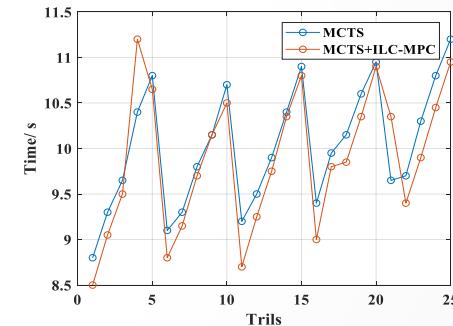


Figure 9: Motion time of parking in different initial positions

Adaptability to different initial positions

changing the initial vehicle angle from 0° to $[-8^\circ, 8^\circ]$

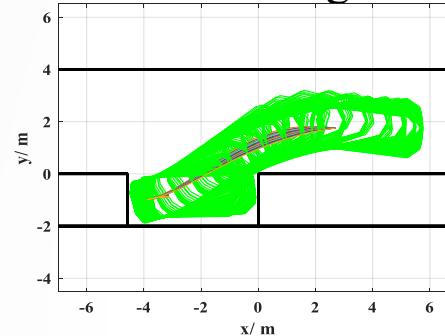


Figure 11: Parking trajectories when change the initial angle of vehicle from 0° to $[-8^\circ, 8^\circ]$ at $(2.7 \text{ m}, 1.75 \text{ m})$

Adaptability to different sizes of slots

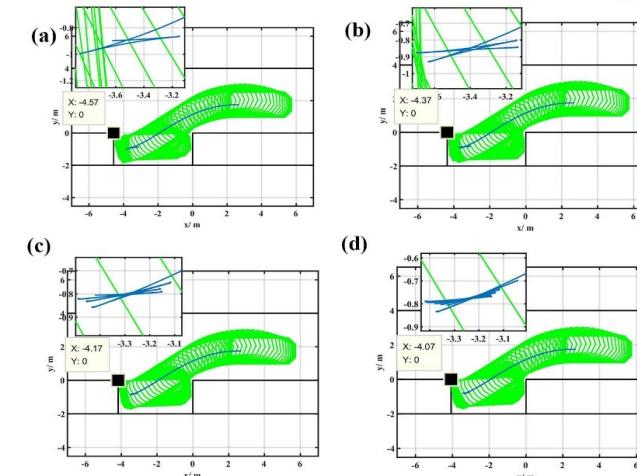


Figure 12: Parking trajectories using same model and parameters with different parking slot length: (a) 4.57 m; (b) 4.37 m; (c) 4.17 m; (d) 4.07 m

Adaptability to different road conditions

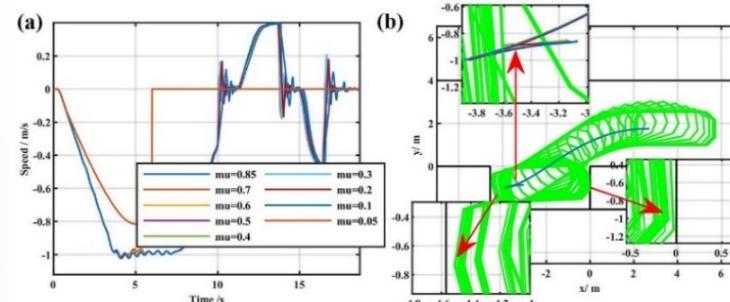
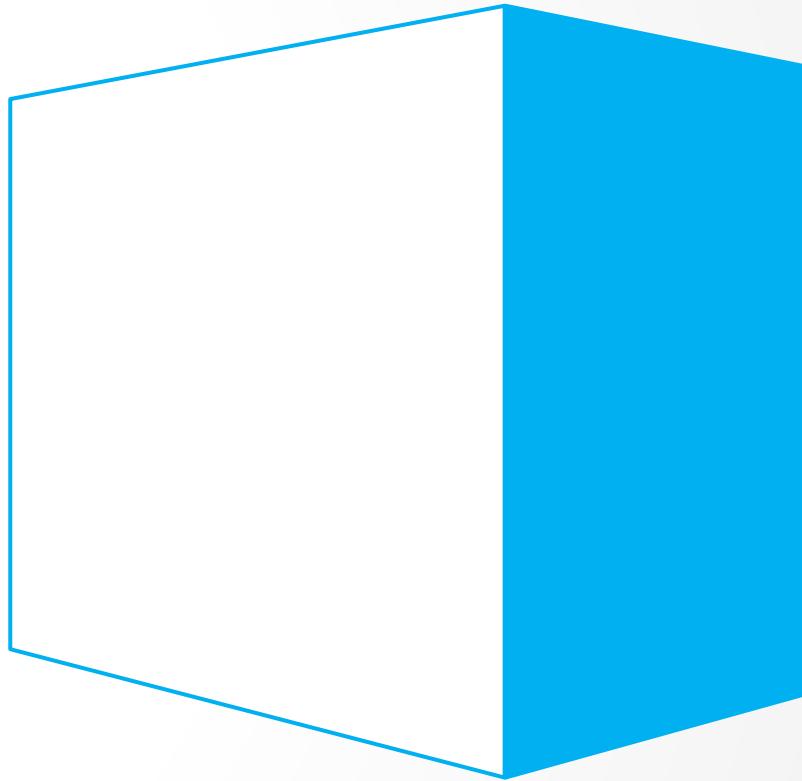


Figure 13: (a) Speed response, and (b) parking trajectories with different road friction 0.1-0.85, without 0.05

- ✓ Adaptability to different initial positions/ sizes of slots/ road friction has been confirmed

- 1** Introduction
- 2** Preliminaries
- 3** Double-layer data-driven parking
- 4** Comparison of simulation
- 5** Summary



Summary

1. The proposed method achieved high precision in position. The mean precisions of parking position in the y -axis for one-layer open-loop control and double-layers control are 0.010 m and 0.016 m, respectively.
2. Speed compensating is beneficial to the parking time performance and avoids sudden deceleration at the expense of higher y -axis errors.
3. Generalization ability of the proposed method is confirmed.

A double-layer data-driven motion planning and control method for parallel parking

Tongji university

Shaoyu Song PhD student
1810554

Tel: 18621284659

Email: s.song@tongji.edu.cn

WOS ResearcherID: AAR-2372-2021

Orcid : <https://orcid.org/0000-0001-7607-3167>

1

Thank you

