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0SL2022 Research motivation Related Work

Automated Parking System(APS) for Wireless Power Transfer

. Wireless Power Transfer: transmission of electrical energy without wires
ST as a physical link
SR A/ QS TTT==~, Material 1

..
~.
~

| Fewer wires, increasing the mobility, convenience, and safety
Material 2

R it 3 Key Challenge: technical challenges such as the low transfer efficiencies

3 as the distances increase made this WPT develop very slowly
2

Distance(cm)

Diagram of a typical wireless power transfer Power transfer efficiency for different coil materials[2]
Detection Py M Path planning Y ¥ Path following control

Park and Charge: vehicles are parked 96 % of their time
Critical Needs: high precision of parking position

Efficiency(%)

Modules: slot detection, path planning, path following control, ego- D D Rt
vehicle’s posture estimation, and chassis control —
= f
Directly related to parking accuracy: planning, following control [D D E ¢ :D D
— 1 —
________ e

1
A typical automatic parking system
[2] Machura P, Li Q. A critical review on wireless charging for electric vehicles [J]. Renewable & Sustainable Energy Reviews, 2019, 104: 209-234.
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Related work
Conventional method
Path planning Path-following control

olo|o J= % j:[x’(t)Qx(z)+uT(t)Ru(t)]dt
N
o | 0 [
— -1 J = . —q;
w o/</Q<‘¢ - B ) o J* - %exo (Sd )T Pe_\.o (Sd) O = tan (kL) ngl(qR, q )
il °le 0 = tan I(ZLz_mH) 90 = 9rc
£ D*

Circular arc, line, spline curve... RRT, RRT*, BiRRT,... A*, D*,... u(t)=—Kx(t), K=R'B'P Y git1 = q; +f(q;, ui)At
Curve-based method Sampling-based method Search-based method Linear quadratic regulator [6] Pure pursuit [7] Model predictive control[2]
Advantage: simple, easy to implement . Advantage: simple, easy to implement
Disadvantage: parameter adjustment rely on experience Disadvantage: rely on model with fixed parameters, hard to adjust parameter

Al-based method:

Characteristic: high on-line computational efficiency, working condition self-adaptation, parameter self-adjustment

In previous study:

(a) v ! ILC-based longitudinal control

Selection™=== Ex plns ion === Evaluation====- Backup . . .
Naro™ A 7 T — . motion planning: data-driven learnable Monte Carlo tree search(MCTS)-open-loop control
argmax (QF U) A 2. p v 30 Bt . . . . .
f Ao NS A CA O—— T s tracking control: iterative learning control and MPC-could not alter the trajectory
é é o é ,"-—1 ¢ Ay ‘ory rror —,! T B d .
o 0= Po=pxm P N u= vyt [ Jm'im.,, s How could the two parts work together to further improve performance?

[Detechon ]__[ Path/J_[ Path [1] Song S'Y, Chen H, Sun H W, et al. Time-Optimized Online Planning For Parallel Parking With Nonlinear Optimization and Improved
ALl 'a°k'"9 Monte Carlo Tree Search [J]. Ieee Robotics and Automation Letters, 2022, 7(2): 2226-2233.
| Estimation |- [2] Song S Y, Zhang S K. Data-driven trajectory-tracking in automated parking system via iterative learning compensation and model predictive
control [J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering.

Chassis
Control

B

“
<008

[FSE A 2 A double-layer data-driven motion planning and control method for parallel parking
School of Automotive Studies, Tongji University Shaoyu Song *, Hui Chen 5/1/2022




( N
000
E V S 3 5 A double-layer data-driven motion planning and control method for parallel parking
0SL2022

1 | introduction
Preliminaries
3 Double-layer data-driven parking

4 Comparison of simulation

5 Summary

A SAE S

2
=

g
School of Automotive Studies, Tongji University 5/1/2022 1J~‘§"




o0
000
E V S 3 5 Introduction Preliminaries  Double-layer data-driven parking Comparison Summary

0S1.20727 Monte Carlo Tree Search Model Predictive Control & Iterative Learning Control

Markov decision process
* A mathematical model described by a five tuple< S, 4, P, r, 11 >

v’ state space-S': v’ action space-4: y
: . : . reward function-r:
W vechicle state (x,y,0,v,6) B Discrete steering wheel angle increment
: . | =
B Discrete speed increment 7(Si @) = Ry + R + Ra + Rsare
v’ State transition function -P: v discount factor - : R = 20000 o000 R = 20000 o000
: . o . YT g el 20T greie-od ’
B vehicle single track W Reflect the ability of the algorithm I+e ) - L C
to observe the future state R, =c XZ| a; =4 | R,y ={0,-10000}
* How to control the speed and steering angle given vehicle state? -
Monte Carlo tree search
N(s)
. , ] I
q(s,a) < N(s,a) z li(s, @)z D Suecion e Expansion s— Erafusion s— Backup
l:1 s s s >
* [Iteratively performs 4 steps: selection - expansion - evaluation- argmax(Q + ) ° i 0
backup "8";"(0" w ] a S ” o o
* Tree policy: ® m:) - ° \ . ¢ \ . é v " *
( ) ( ( ) P( )li ZbN(S,b)) s a Py . é . Py v
a:(s) = argmax(q(s,a) + cpyct P(s, ) [——— e/ \p» | n/ \p
pue 1 + N(S’ a’) pis a)=Pyls) vis) = V’(p)
a Bt :
N(s, a)l/ Tem Monte Carlo Tree Search
r(als) = z (N (s, b)/Tem)
b )
7 S e e 22 e A double-layer data-driven motion planning and control method for parallel parkin A
[EAFAXEAEZ y p d p p g d&
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Model Predictive Control & Iterative Learning Control

Model Predictive Control

* General form * Tracking control

min Ine(e, Up) Np Nc 2
Ut Eran Eovaneror Evsnine JE®,u(t —1),AU(5) = Z 1@ + 0 AU + Z 14U(E+d01 +pe”
st Serre =f Gk =t N=1[ > i (E+ K) S Ut + ) < upag(E+K),
Sk €EX Aupin(t + k) < Au(t + k) < Aupax(t + k)
U €U st FUTURE

Control Ne steps (perform the first), predict Np steps

Iterative Learning Control

T

BN

A

—e— Reference Trajectory
—e— Predicted Output
—e— Measured Output

1 Predicted Control Input

{ | —— Past Control Input

1
¢ Prediction Horizon >
| | | | | | |

Xl = Alxly + Bl yt, = Clxly
-1
Define g-coefficient matrix x';.; = g'x/;, obtain x!; = (q'1 — AY) "uly

¥ = PHah) ulp + CHAD x, PH(gY) = €Y (g1 — AD 7B

Control
Signal

T T T T T T i

e =
Sample Time
k k+1  k+2

Model Predictive Control

k+p

Initial state 0 S | Sarose e
y! p! 0,m<k »
11 11 ; /'\ O
P 2,1 1,1 Pmk = C B m=k %"‘ [a] :
ctat, _ ..AlkBlk,m>k / —
N 1 P N— 1 1 . P1 1 u ]N 1 Iteration it l:‘s'smmelierahon

opt -

T
(Pl) T, cP' + Ry +5LG) ut + (PHTT, P +SLG>
Uope=((P) TicP! +Si6) (P)Tig

e Control law: uljy1x = Q' (Ui + L'efrys)
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0SL2022 System overview Lower-level data-driven learning control Speed compensating
Overview

* Two parts: upper level + lower level

Up layer data-driven
trajectory planner

-
sl
M
1
1
1
1

Lower layer data-driven

/ trajectory-tracking controller
Planning /| Planning

1
o ] 1
1

\ Planning 71 Time

Parking space, Refe; encé: ILC ISpeed ': \ Following
Poses x, speed vi 3 : : .
Speed v, L E— : longitudinal Jeommindsiy: E Trajectory 1 .
easured speed {- C
Steering angle ¢ 7 E=Ls control k . ! Following
= Reference state x}, : ! !
Reference speet{ Vit Fteering angle t ! E -
Reference steeringgr MIPC lateral | tommands ¢ 1 H ! Following
3 ' 1
> control K ! : : | ;
Posexx; : ! b = P —————bp) s e,
Steering angle @ £ S a Planning ' Planning ' " Planning
cycle1 cycle 2 cyclen

Figure 2: Overall diagram of the parking motion planning and trajectory following control system  Figure 3: Iterative cycle, the vehicle and parking space information is our root model that is different
from [18]
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0SL2022 System overview Lower-level data-driven learning control Speed compensating

Lower-level data-driven learning control

* Online trajectory search+ trajectory following control

Terminal T

Time stamp k+2

Time stamp k+1

Time

AT . s 0
Time stamp k
° e Initial pose

Al ”7/ Target slot

. O k-root node
Working space o k-child node

° Projection

Figure 4: Search in spatiotemporal space in MCTS
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Speed compensating

* Step 1: learn

* Obtain matrix Q and L 0.2 .
Acceleration phase planned speed
* Collect error data PR W ——— S Q|
_ ejl,l . 'yé,l - _y]l,1 . Deceleration phase—>
l l l -0.2 [
€i2l=1|Yaz|=1Yj2

0 l !
einl  Wand LYjn.

Speed /m/s
S
N

-0.6
* Update control law
l _ nlel 11 0.
wipie = QM uljp + Llefyyq) 081
* Collect error data 4 L . . .
N 0 2 4 6 8 10 12
. Time /s
y Step 2: online test Figure 5: Phases of the speed during the parking
* The length of the commands N is different in different parking position
[T A s 2 e A double-layer data-driven motion planning and control method for parallel parking 1 1‘ 4
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0SL20272 Test conditions Verification of lower and up layer Adaptability to different conditions

Test conditions

Table 1: Vehicle and controller parameters
O Test poses
____tem [ Value [ Item [ Value | O Learn pose
3.569m Front overhang 4
1551m  Rearoverhang [T I
2305m  Trans. ratio .|
3569m  Front overhang : i
400%/s  Queight -MPC E
20steps R weight-MPC 0
15 steps T,o-LOR
5 Rig-LOR 2
| | ScIGR [ 00Xl ]
-4 . . . . . . .
6 -4 22 0 2 4 6
X/ m

Figure 6: Initial positions of training in the double-layers data driven method, where the data in circles are used in
motion planning layers and red circle is used to learn speed compensate
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Test conditions

Verification of lower and up layer

Verification of lower layer

0.15 T
|

——MCTS
——MCTS+ILC-MPC

X: 8.55
Y:0.08028

Speed error (m/s)
=
5‘
x-error (*100%)

=
o
IS
£
o
—_
=
=

I A )
Time (s) Time (s)
Figure 7: Comparsion of speed following errors at

(1.7m, 1.25m,0° )
Verification of overall system

Table 2: Statistical results of parking process in the training poses, 25 trials

| Mtem | Open-loop | Withtracking

Mean 0.010 Gear Changes
Max 0.055 times
U Min 9.79¢-05
Std. 0.015 16.904
Mean 1.137 . . . 0.715
o e 1318 Hme/s
Min 0.984 1.013

St | 0.091 [ 0.090

=7 234 e A 224 s
[ FAZ T EZ b
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Double-layer data-driven parking

Comparison

Summary

Adaptability to different conditions

y-error (*100%)
P T

IS

——MCTS
——MCTS+ILC-MPC

zeta-error (deg)

0 2

4

6 8 10

Time (s)

coordinate, and (c) €

Eftective
rate

v" Final parking errors of open-loop control is more stable and smaller

Time/ s

Figure 9: Mo

A double-layer data-driven motion planning and control method for parallel parking 1£

Time (s)

Figure 8: Comparsion of trajectory-following control errors at (1.7 m, 1.25 m, 0° ): (a) x-coordinate; (b) y-

Trils

tion time of parking in different initial positions

v" Tracking control is beneficial to the time and control errors during the parking

N

SN
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0SL202°? Test conditions Verification of lower and up layer Adaptability to different conditions
Adaptability to different initial positions Adaptability to different sizes of slots

changing the initial vehicle angle from 0 to [—8°, 8°] a0 &

© ) (d)

N e E CEETET)
8 Y: 5z
| St
-

-

Figure 11: Parking trajectories when change the initial angle of
vehicle from 0° to [-8° ,8° ]at (2.7 m, 1.75 m)

Adaptabﬂity to different road conditiOﬂS Figure 12: Parking trajectories using same model and parameters with different parking slot length: (a)
(@) ® W A 4.57 m; (b) 4.37 m; (c) 4.17 m; (d) 4.07 m

v Adaptability to different initial positions/ sizes of slots/ road friction has been
confirmed

mu~085
mu=0.7
mu=0.6
mu=0.5
mu-0.4

— mu=0.3
mu=0.2
mu=0.1
mu=0.05

Figure 13: (a) Speed response, and (b) parking trajectories with different road friction 0.1-0.85, without 0.05

[FFA 5 2 A double-layer data-driven motion planning and control method for parallel parking |4 4
School of Automotive Studies, Tongji University Shaoyu Song *, Hui Chen 5/1/2022 1J\\:\'



( X J
E \7§é 5 A double-layer data-driven motion planning and control method for parallel parking
0§L2022
1 | mtroduction
2 Preliminaries

3 Double-layer data-driven parking

4 Comparison of simulation

[EFAZ T EF b 14

School of Automotive Studies, Tongji University 5/1/2022

-



EVS35

0§L2022

Summary

Introduction Preliminaries =~ Double-layer data-driven parking Comparison Summary

1. The proposed method achieved high precision in position. The mean precisions of parking position in the y-
axis for one-layer open-loop control and double-layers control are 0.010 m and 0.016 m, respectively.
2. Speed compensating is beneficial to the parking time performance and avoids sudden deceleration at the

expense of higher y-axis errors.
3. Generalization ability of the proposed method is confirmed.

~
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