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1. Introduction: Background

« Massive deployment of electric vehicles (EVs) combined with the integration of clean
renewable sources has been regarded as an effective way to reduce carbon emission.
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- V2G is considered as a solution to overcome the EV overburdening the power system.
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1. Introduction: Existed literature
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e Offline models: Assume complete information of the future.
* Online models: Rely on an optimization model to generate the control strategy.

Unpredictable renewable generations
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[1] Wang, J., Bharati, G.R., Paudyal, S., Ceylan, O., Bhattarai, B.P., Myers, K.S., 2019. Coordinated Electric Vehicle Charging With Reactive
Power Support to Distribution Grids. IEEE Trans. Ind. Inf. 15, 54—-63.



1. Introduction: Existed literature

EV real-world travel pattern heterogeneity
* Travel distance distribution

e Charging time and charging preference difference
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1. Introduction: Existed literature
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* Model free online charging management
— To overcome this difficulty, reinforcement learning (RL), which is recently widely applied in
automated vehicles.

However, the existing RL-based charging management
works rarely take into account real-world travel pattern
heterogeneity, especially that in China, the largest EV

market.

Statens Rewardss Actiongs

This paper proposes a data-driven method for EV charging
management based on deep Q-Network RL.

Environmentss



2. Problem Setup and Methodology
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Problem Formulation

* The EV charging management is modeled as a finite Markov Decision Process (MDP) with discrete
timestept={1, 2, ..., T }.
e Aim:

* (1)To determine cost-efficient charging schedules with limited past electricity prices and vehicle
energy information.

* (2) To meet travel demands.

State: | Cost-efficient | |Trave| Needs |

(1) Home or not

(2) The state of charge (SOC)
(3) The electricity prices for the former AN hours



2. Problem Setup and Methodology:
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State :

Travel Pattern

Data Source: National Monitoring and Management Centre for New Energy Vehicles (NMMC-NEV).
Daily vehicle kilometers travelled (DVKT) distribution: Gamma distribution

Distribution: Shanghai, 2018
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2. Problem Setup and Methodology:
Methodology
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State :

Electricity price : hourly Experiment Uniform Shanghai Energy Price (EUSEP)

Derived from the Uniform Singapore Energy Price downloaded from the Energy Market Company
Time span: 1/1/2021-12/31/2021

Battery capacity: £, =49 KWh Period | Average EUSEP (CNY/kWh)
i ) Jan-21 0.248
Charging actions : Feb-21 0.296
7kW(Charging) , -7kW (Discharging), O Mar-21 0.329
Apr-21 0.312
May-21 0.320
Jun-21 0.321
January 7 February Jul-21 0.532
Sep-21 0.496
Oct-21 1.565
Nov-21 1.099
Dec-21 1.514
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2. Problem Setup and Methodology:
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Reward:

A { min{at, Bmez — Bz}, ifar 20, 15 o cire the battery capacity range.

=\ —min{-a, B}, ifa;<0

'r—{ —Py - ay - hy t#t,
! —Py-dy - by —|7 - (Bmae — Er)Y, t=1y

» A penalty if the EV departs when it is not fully charged.
T— a comprehensive penalty factor.

Optimization of Action-Value Function
T

Q*(s,a) = maxE, [Z Aty

t'=t

Bellman Q (S a@) =K |r +fymaxQ (s a ‘S = §,at = a
. 11 = t \2t+1y W41 t — t —
equatlon 2+ ) Wy a1 ) +1, Wi+ ’

Qi(s, a; B) will converge to Q(s, a; 6) = Q*(s, a) finally.
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2. Problem Setup and Methodology:
Methodology

3-layer neural network

The input of the fully-connected neural network is the past 24-h electricity prices, the EV battery SOC calculated
from the charging power and the daily vehicle kilometers travelled.

Input Output
Past 24-h EUSEP (P) a=7,0,-7
SOC (E)

(hours to departure (h))

Hidden layer
64 units
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2. Problem Setup and Methodology:

Methodology

Deep Q-network Method

state: s;

state: S¢4+1

ﬁ

Fully-Connected Neural Network

reward: 7,

a; = argmin Q (s, a)
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Algorithm 1 EV Charging/Discharging Managing

Input: Past 24-hour electricity prices and initial battery SOC.
Output: EV charging/discharging actions ay, .¢, .
1: fort=t;tot, do
2:  Receive the electricity prices and initial battery SOC.

Calculate action-value Q(s;, a; 0) from the neural network.

st+1 = f(st,a¢).

end for

3
4:  a < argmax Q(s¢,a;0).
5
6:

Electricity Price
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Action (Charging/Discharging)

2. Problem Setup and Methodology:

Training process
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To guarantee the balance between exploration
and exploitation, e-greedy policy is adopted.

Loss function:

L(0) = E[(r + ymax Q(s',a’;0) — Q(s,4;0))’]
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3. Results and Discussion

Results

Cumulative rewards

Average Total Rewards
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» Training: 20000 epochs

» It shows that a good policy with a high cumulative
reward can be learned by the proposed method.

» the charging/discharging actions are randomly
chosen in the first 2,000 epochs

» and then the total rewards increase quickly and
reach a relatively stable value with fluctuations.
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Cumulative cost (CNY)

3. Results and Discussion
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Test
—— Uncontrolled strategy l,, * Compared with the uncontrolled strategy,
1000 F —— DQN-RL
DQN-RL with known departure time R the proposed DQN-RL method can greatly
500 - OTine optimum 1102 reduce the cost.
>
B \“\/’ 18 £ . . .
0 8 ¢ The offline optimum can give the lowest
500k le 2 cumulative cost and serve as a benchmark.
= However, the offline optimum is not practical
QL .. . .-
1000y 14 2 due to the limited availability to the future
= . .
—1500F Electricity price 19 2 |nf0rmat|0n.
—2000
. . . . . 10
0 20 40 60 80 100 120
days (hours)
References:

Offline optimum: The offline optimum can give the lowest cumulative cost and serve as a benchmark. (NOT practical)

Uncontrolled strategy: the EV is charged at the maximum charging rate until reaching 49 kWh.
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Cumulative cost (CNY)

3. Results and Discussion
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1000 F —— DQN-RL

—e— Uncontrolled strategy

DQN-RL with known departure time
—s— Offline optimum

112 » The improved DQN-RL: the EV owners have a
pre-decided departure time and the countdown

=
R = .
500 ~ hours is added to the expended state.
=2
of \’\/-*‘ 18 <
£ ¢ The improved DQN-RL has much lower cost
~500} 1° £ than the original DQN-RL.
~1000 f {2
£ ¢ Value of information (VOI) -
~1500} Electricity price 1, £ Value of pre-decided departure time
—2000
. . . . . . 10
0 20 40 60 80 100 120
days (hours)
References:

Offline optimum: The offline optimum can give the lowest cumulative cost and serve as a benchmark. (NOT practical)

Uncontrolled strategy: the EV is charged at the maximum charging rate until reaching 49 kWh.
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4. Conclusion and Future Research
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Conclusion:

In this paper, a Deep Q-Network based reinforcement learning method is proposed to solve the EV
charging/discharging management problem in an online manner. The actual travel pattern
heterogeneity in a typical city, Shanghai, is taken as an empirical example. The DQN-RL method is
further improved by adding the known departure time to the states. The results reveal a significant
advantage of the improved DQN-RL method over the uncontrolled charging method.

] Daily Travel Pattern
state: s; + state: Sgyq — \
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reward: 7 i reward: 7p44 O/-_\ Ceee :
Electricity Price
a; = argmin Q(s¢, a) ‘
ar € Ay SOC

Fully-Connected Neural Network
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4. Conclusion and Future Research
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Limitations

We have to admit that this paper still has a few limitations, such as the lack of actual electricity prices
in China. The actual real-time electricity prices in China will be very helpful for us to accurately
evaluate the economical effects of V2G in China.

The extra battery degradation is not taken into consideration in this paper, but in practice, high
battery-swapping costs for the EV owners can occur if the V2G decreases the battery pack life.

Future research

the action space can be changed from discrete space to continuous action space to reflect the
variation of charging and discharging power.

Moreover, this approach is the foundation to precisely evaluate the environmental and economical
benefits of V2G.
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Input
Past 24-h EUSEP (P)
SOC (E)
(hours to departure (h))

Hidden layer
64 units
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Output
a=7,0,-7
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