

A Data-Driven Approach for Online EV Charging Management Considering Travel Pattern Heterogeneity

Presenter: Xu Hao

(School of Mechanical Engineering, University of Science and Technology Beijing)

Yue Chen

(Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong)

Presenter introduction

北京科技大学 机械工程学院
School of Mechanical Engineering

Research Interests

- Transportation carbon neutrality
- Big data analysis of electric vehicle travel pattern
- Electric vehicle market and policy analysis

■ University of Science and Technology Beijing, School of Mechanical Engineering

Assistant professor. 02/2021 - present

■ Tsinghua University, School of Vehicle and Mobility

Ph.D. 08/2015-10/2020

xuhao_research@ustb.edu.cn

■ Oak Ridge National Laboratory (U.S.) Transportation Energy Evolution Modeling

Joint Ph.D. student. 10/2018-10/2019

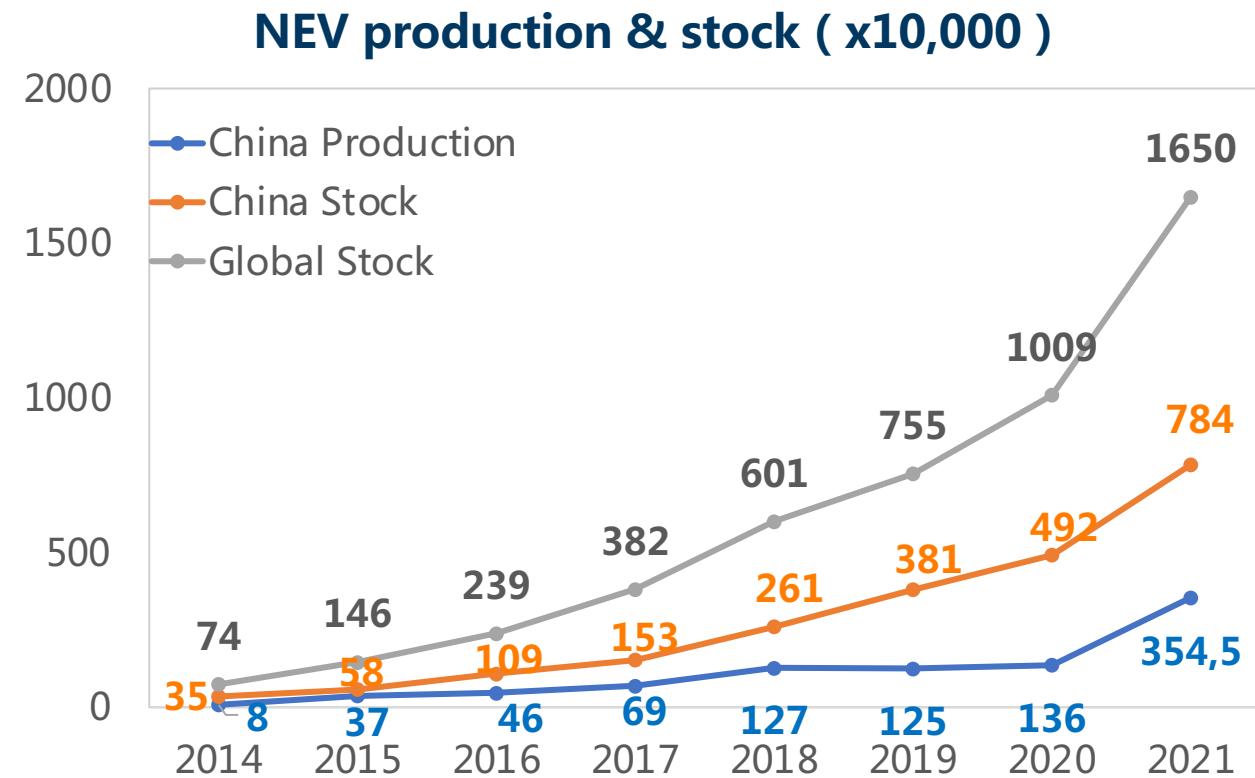
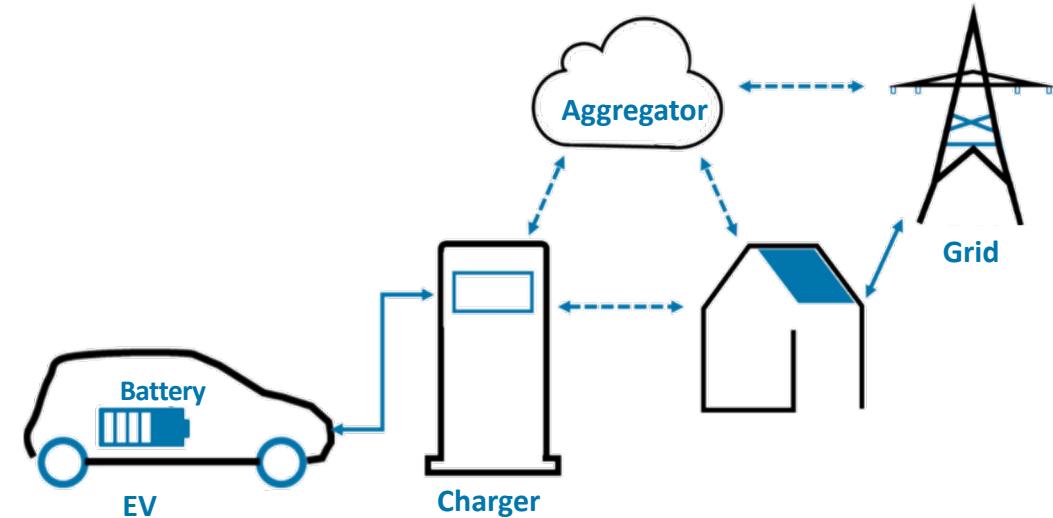
■ Participated in U.S.-China Clean Energy Research Center Project during Ph.D research,

■ Published over 9 peer-reviewed papers in related areas.

- 1. Introduction**
- 2. Problem Setup and Methodology**
- 3. Results and Discussion**
- 4. Conclusion and Future Research**

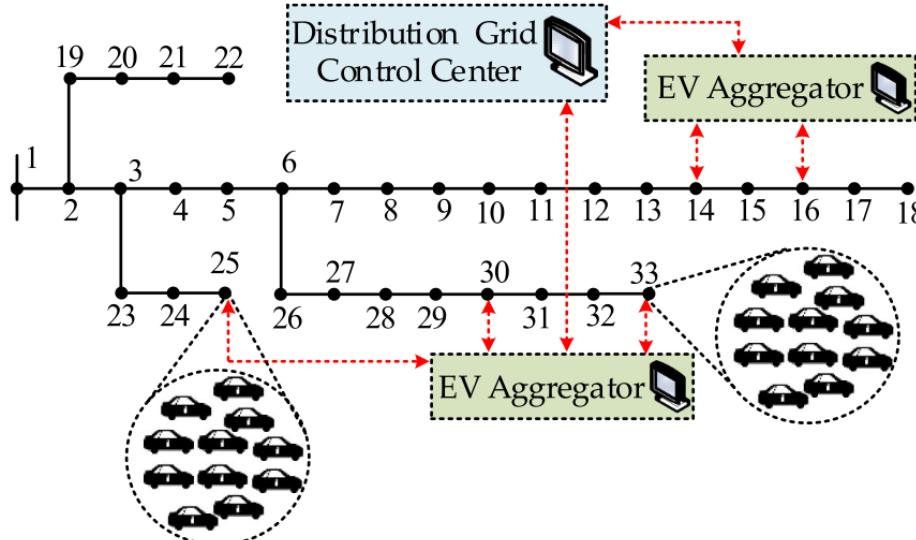
1. Introduction: Background

- Massive deployment of electric vehicles (EVs) combined with the integration of clean renewable sources has been regarded as an effective way to reduce carbon emission.
- **V2G** is considered as a solution to overcome the EV overburdening the power system.



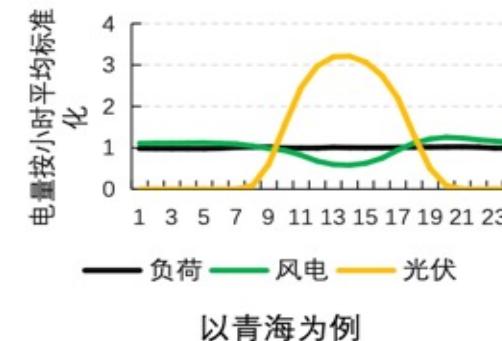
1. Introduction: Existed literature

- **Offline models:** Assume complete information of the future.
- **Online models:** Rely on an optimization model to generate the control strategy.



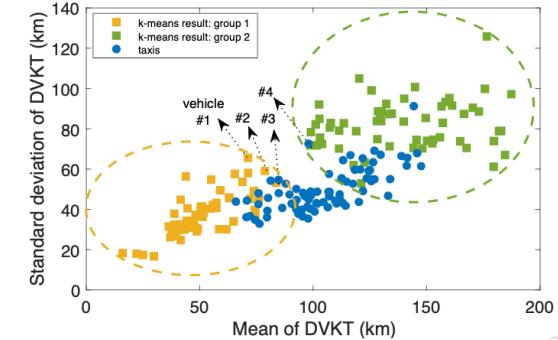
(Offline modelling example)

Unpredictable renewable generations



以青海为例

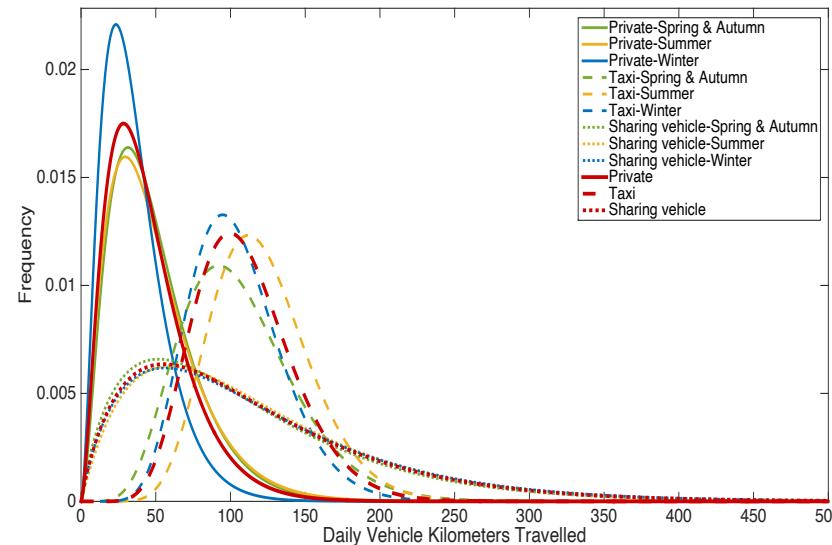
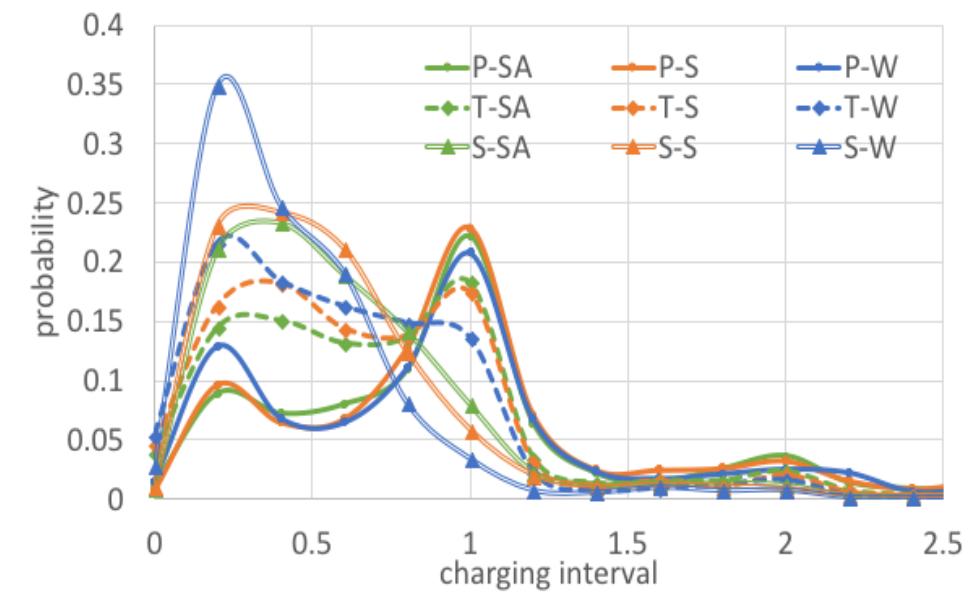
Unpredictable travel pattern



1. Introduction: Existed literature

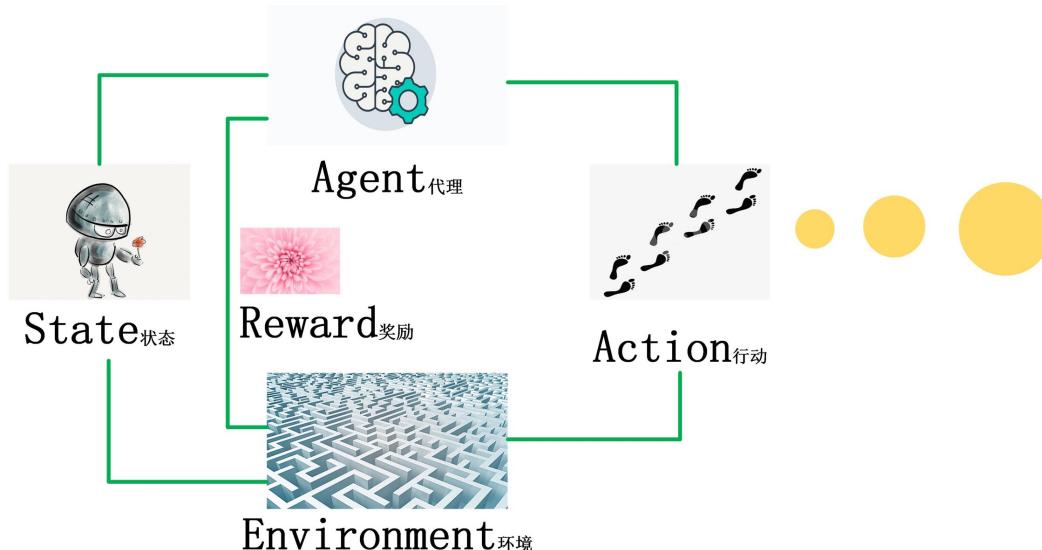
EV real-world travel pattern heterogeneity

- Travel distance distribution
- Charging time and charging preference difference



1. Introduction: Existed literature

- Model free online charging management
 - To overcome this difficulty, reinforcement learning (RL), which is recently widely applied in automated vehicles.



However, the existing RL-based charging management works rarely take into account real-world travel pattern heterogeneity, especially that in China, the largest EV market.

This paper proposes a data-driven method for EV charging management based on deep Q-Network RL.

2. Problem Setup and Methodology

Problem Formulation

- The EV charging management is modeled as a **finite Markov Decision Process (MDP)** with discrete time step $t = \{1, 2, \dots, T\}$.
- **Aim:**
- (1) To determine cost-efficient charging schedules with limited past electricity prices and vehicle energy information.
- (2) To meet travel demands.

State:

- (1) Home or not
- (2) The state of charge (SOC)
- (3) The electricity prices for the former N hours

2. Problem Setup and Methodology: Methodology

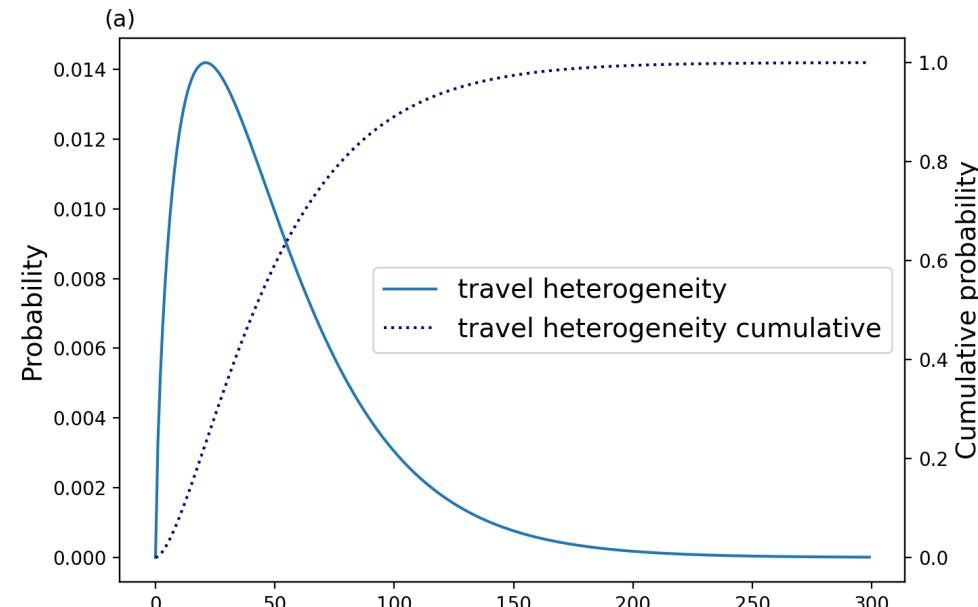
State :

Travel Pattern

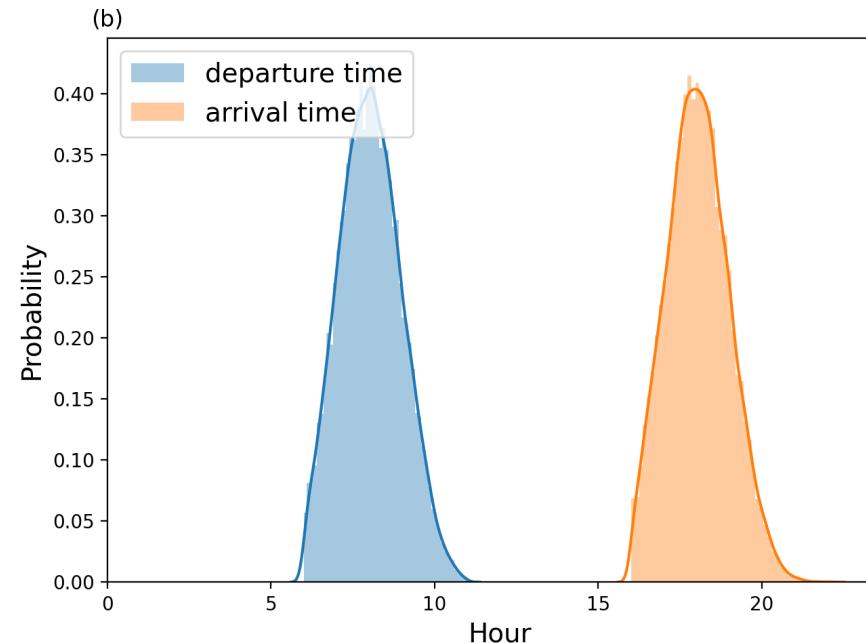
Data Source: National Monitoring and Management Centre for New Energy Vehicles (NMMC-NEV).

Daily vehicle kilometers travelled (DVKT) distribution: Gamma distribution

Distribution: Shanghai, 2018



$$y = f(x|\alpha, \beta) = \beta^{-\alpha} x^{\alpha-1} e^{-x/\beta} / \Gamma(\alpha)$$



$N(8, 1^2)$ $N(18, 1^2)$
bounded Normal distribution

2. Problem Setup and Methodology: Methodology

State :

Electricity price : hourly Experiment Uniform Shanghai Energy Price (EUSEP)

Derived from the Uniform Singapore Energy Price downloaded from the Energy Market Company

Time span: 1/1/2021 – 12/31/2021

Battery capacity: $E_{max} = 49 \text{ kWh}$

Charging actions :

7kW(Charging) , -7kW (Discharging), 0

Period	Average EUSEP (CNY/kWh)
Jan-21	0.248
Feb-21	0.296
Mar-21	0.329
Apr-21	0.312
May-21	0.320
Jun-21	0.321
Jul-21	0.532
Aug-21	0.435
Sep-21	0.496
Oct-21	1.565
Nov-21	1.099
Dec-21	1.514

2. Problem Setup and Methodology: Methodology

Reward:

$$\hat{a}_t = \begin{cases} \min\{a_t, E_{max} - E_t\}, & \text{if } a_t \geq 0 \\ -\min\{-a_t, E_t\}, & \text{if } a_t < 0 \end{cases} \longrightarrow \text{To ensure the battery capacity range.}$$

$$r_t = \begin{cases} -P_t \cdot \hat{a}_t \cdot h_t, & t \neq t_\eta \\ -P_t \cdot \hat{a}_t \cdot h_t - \boxed{\tau \cdot (E_{max} - E_t)^2}, & t = t_\eta \end{cases}$$

→ A penalty if the EV departs when it is not fully charged.
 τ – a comprehensive penalty factor.

Optimization of Action-Value Function

$$Q^*(s, a) = \max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t'=t}^T \gamma^{t'-t} r_{t'} \middle| s_t = s, a_t = a, \pi \right]$$

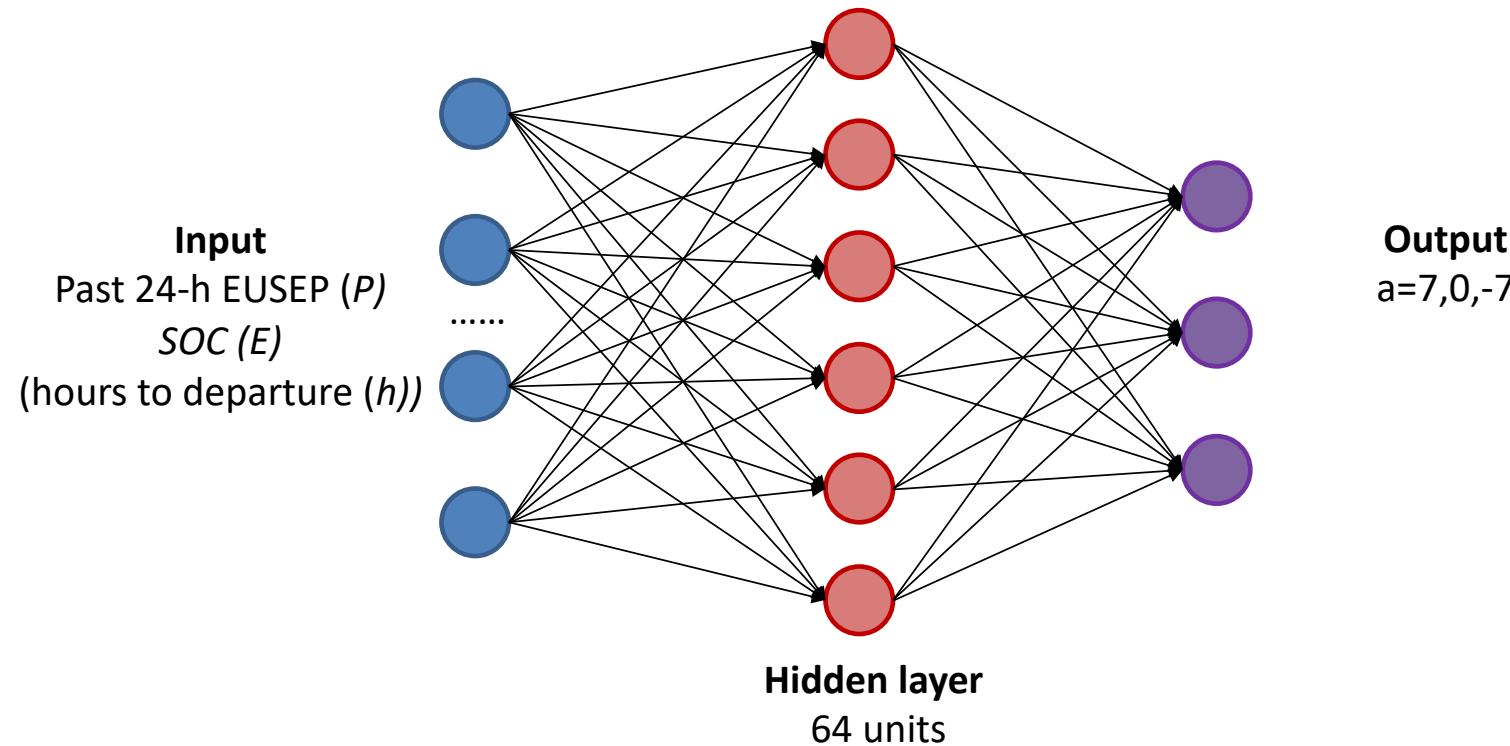
Bellman equation
$$Q_{i+1}(s, a; \theta) = \mathbb{E} \left[r_t + \gamma \max_{a_{t+1}} Q_i(s_{t+1}, a_{t+1}; \theta) \middle| s_t = s, a_t = a \right]$$

$Q_i(s, a; \theta)$ will converge to $Q(s, a; \theta) \approx Q^*(s, a)$ finally.

2. Problem Setup and Methodology: Methodology

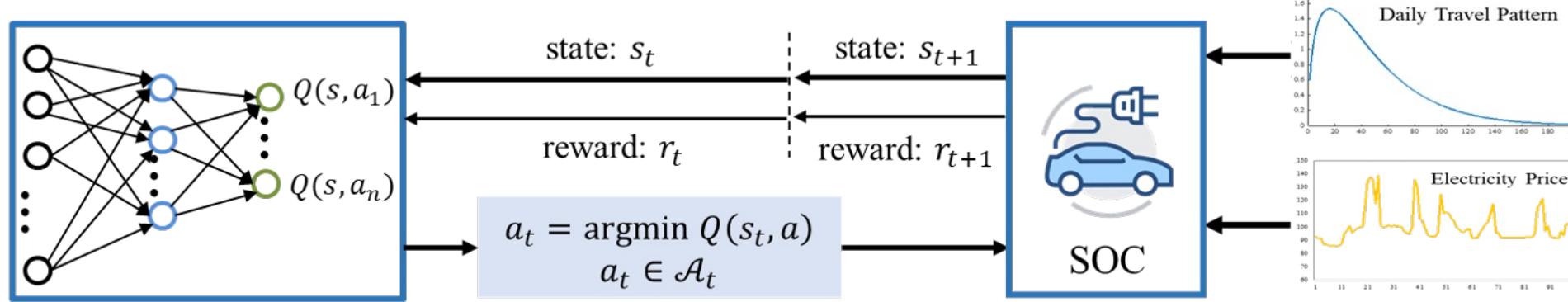
3-layer neural network

The input of the fully-connected neural network is the past 24-h electricity prices, the EV battery SOC calculated from the charging power and the daily vehicle kilometers travelled.



2. Problem Setup and Methodology: Methodology

Deep Q-network Method



Fully-Connected Neural Network

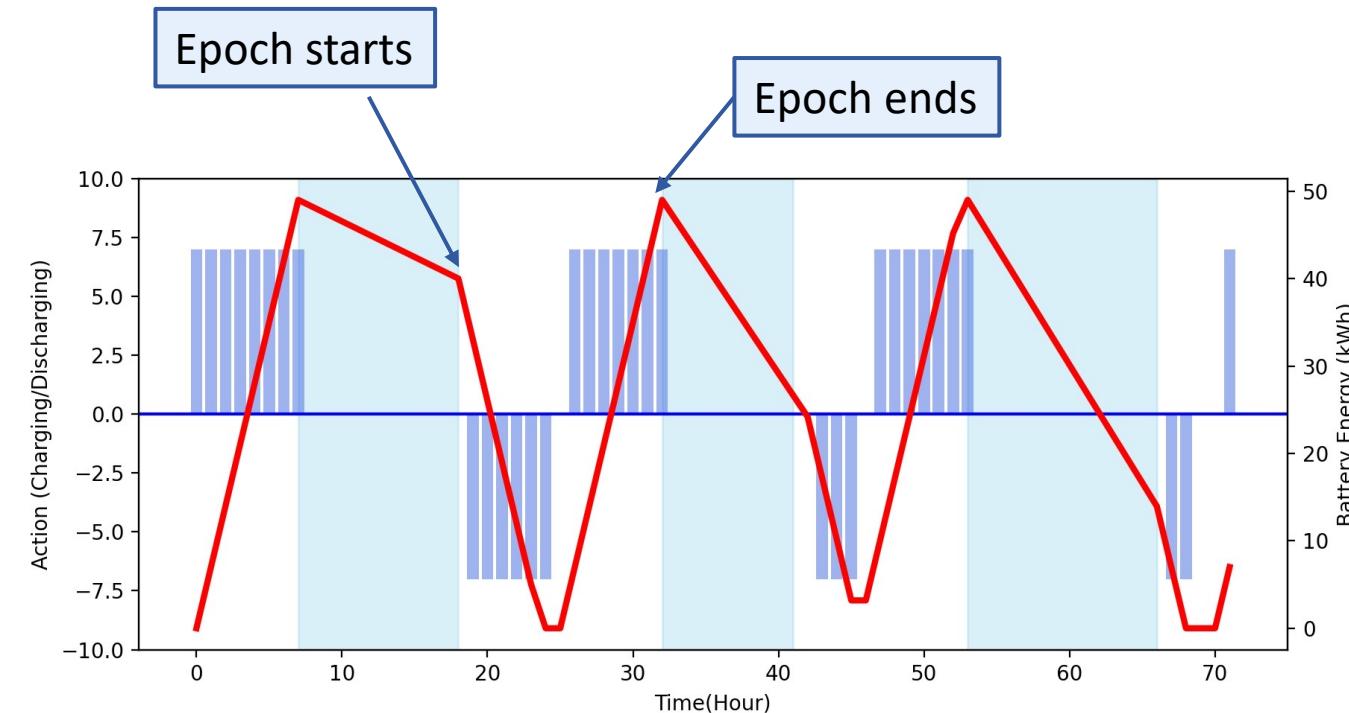
Algorithm 1 EV Charging/Discharging Managing

Input: Past 24-hour electricity prices and initial battery SOC.

Output: EV charging/discharging actions $a_{t_1:t_\eta}$.

- 1: **for** $t = t_1$ to t_η **do**
- 2: Receive the electricity prices and initial battery SOC.
- 3: Calculate action-value $Q(s_t, a; \theta)$ from the neural network.
- 4: $a_t \leftarrow \operatorname{argmax}_a Q(s_t, a; \theta)$.
- 5: $s_{t+1} = f(s_t, a_t)$.
- 6: **end for**

2. Problem Setup and Methodology: Training process



To guarantee the balance between exploration and exploitation, **ϵ -greedy policy** is adopted.

Loss function:

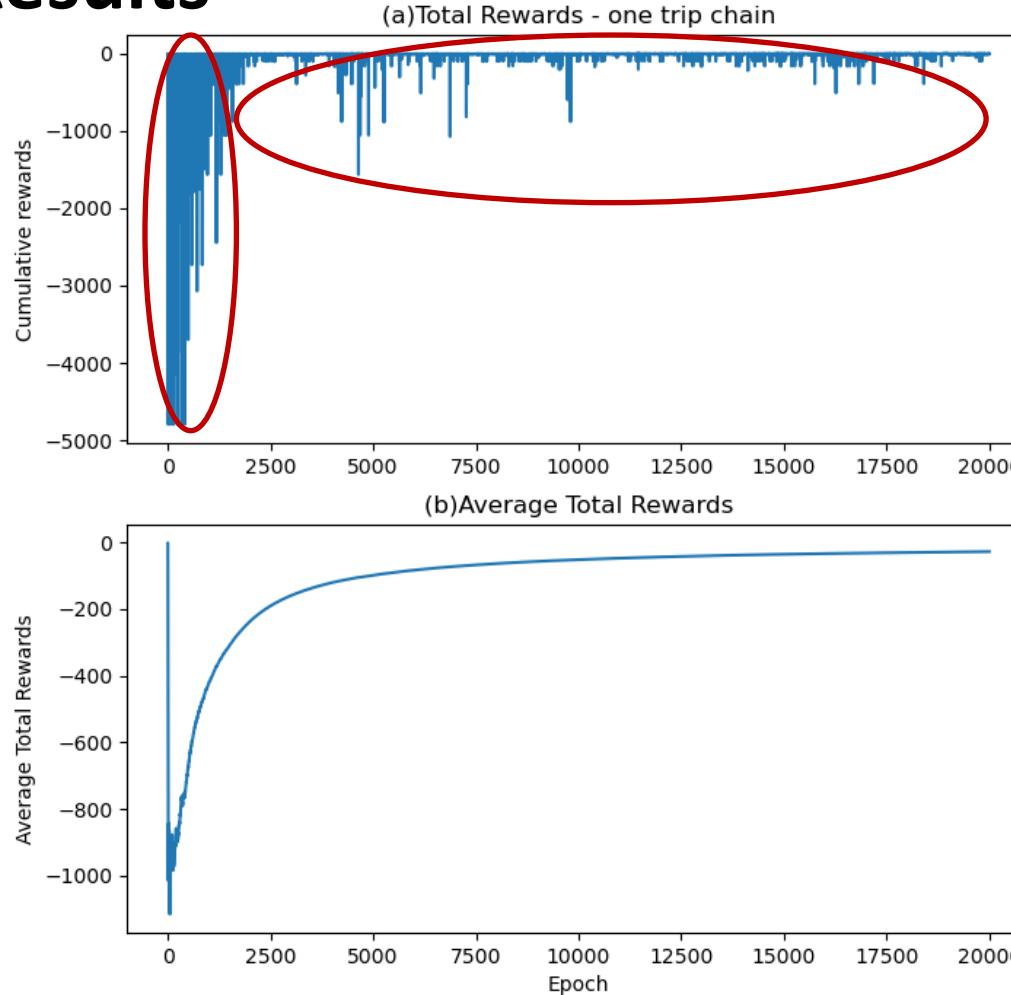
$$L(\theta) = \mathbb{E}[(r + \gamma \max_{a'} Q(s', a'; \theta) - Q(s, a; \theta))^2]$$

Assumptions:

- Only charging at home
- Connect to the grid once at home

3. Results and Discussion

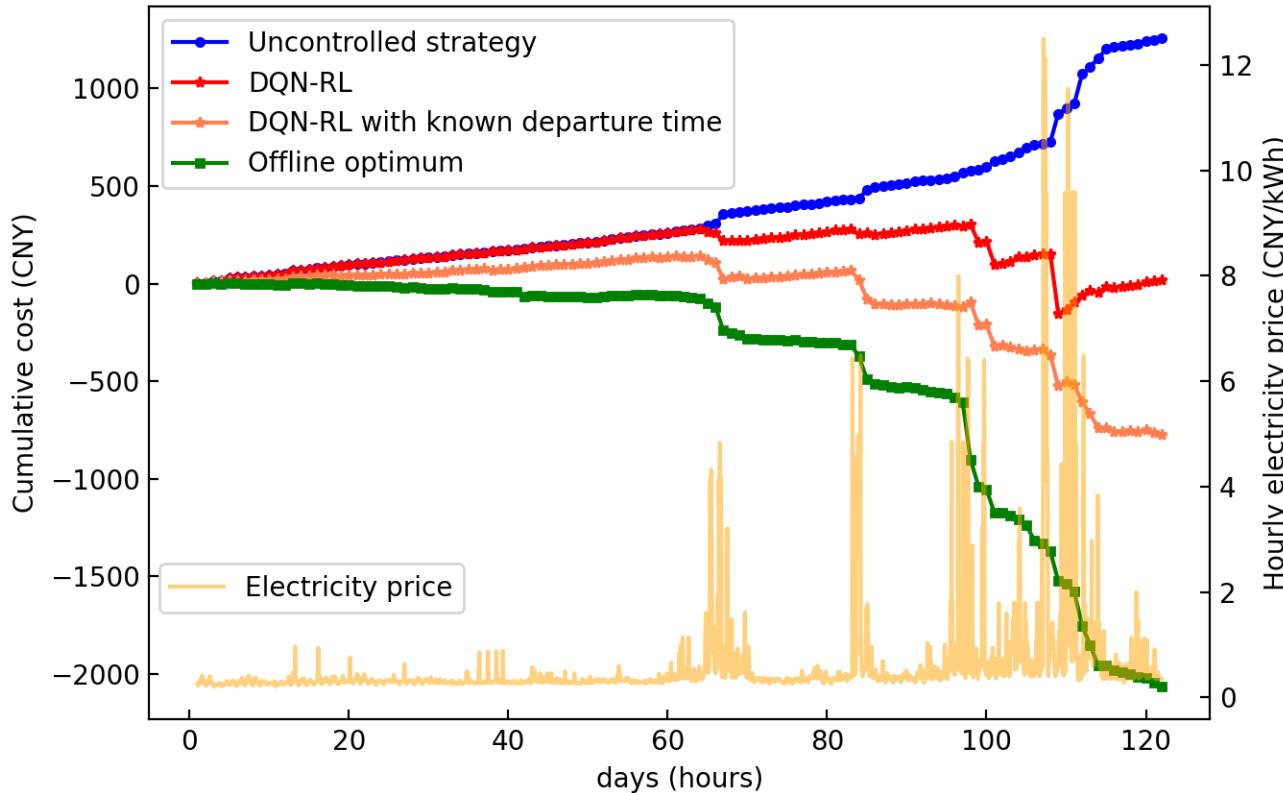
Results



- Training: 20000 epochs
- It shows that a good policy with a high cumulative reward can be learned by the proposed method.
- the charging/discharging actions are randomly chosen in the first 2,000 epochs
- and then the total rewards increase quickly and reach a relatively stable value with fluctuations.

3. Results and Discussion

Test



- Compared with the uncontrolled strategy, the proposed DQN-RL method can greatly reduce the cost.
- The offline optimum can give the lowest cumulative cost and serve as a benchmark. However, the offline optimum is not practical due to the limited availability to the future information.

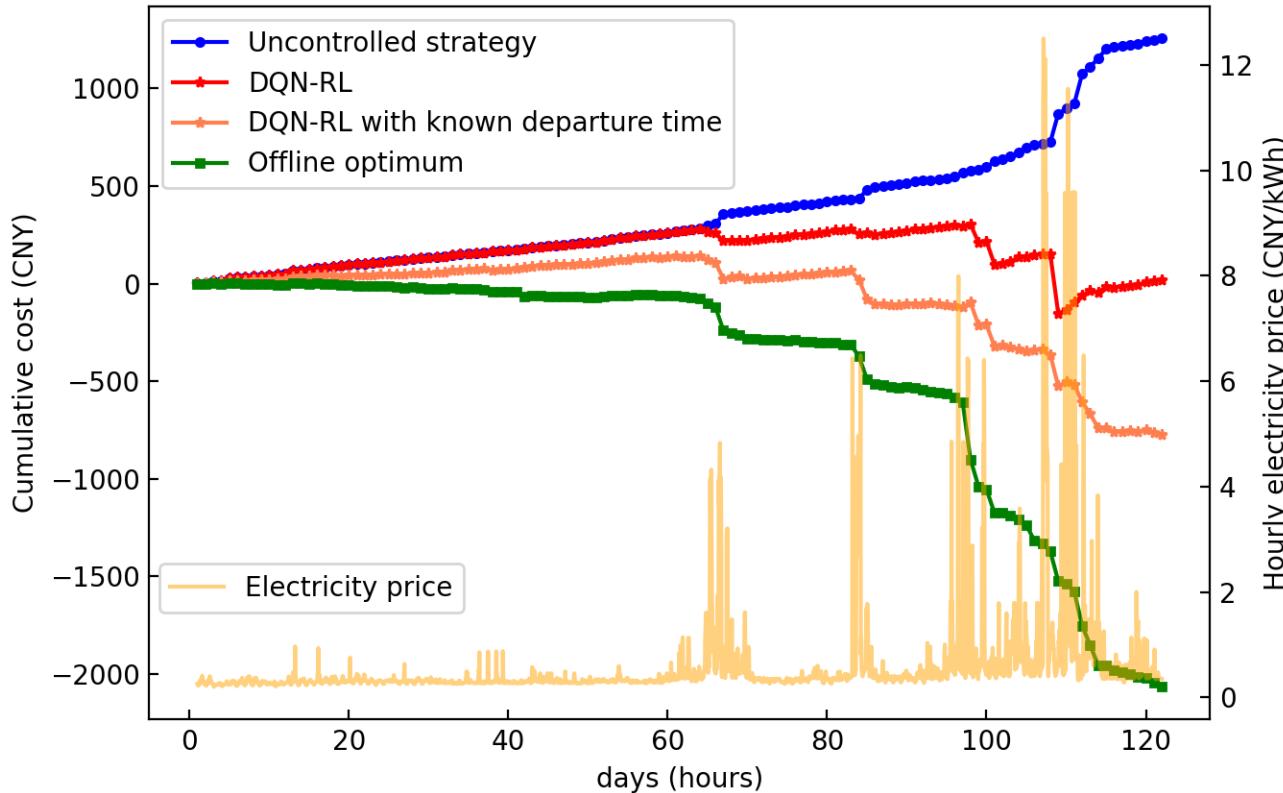
References:

Offline optimum: The offline optimum can give the lowest cumulative cost and serve as a benchmark. (NOT practical)

Uncontrolled strategy: the EV is charged at the maximum charging rate until reaching 49 kWh.

3. Results and Discussion

Test



- **The improved DQN-RL:** the EV owners have a pre-decided departure time and the countdown hours is added to the expended state.
- The improved DQN-RL has much lower cost than the original DQN-RL.
- **Value of information (VOI) -**
Value of pre-decided departure time

References:

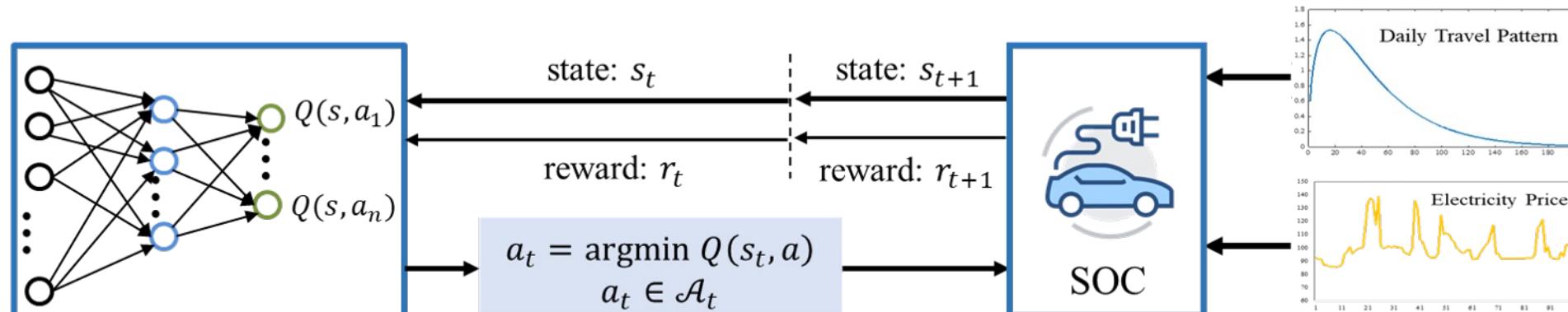
Offline optimum: The offline optimum can give the lowest cumulative cost and serve as a benchmark. (NOT practical)

Uncontrolled strategy: the EV is charged at the maximum charging rate until reaching 49 kWh.

4. Conclusion and Future Research

Conclusion:

- In this paper, a Deep Q-Network based reinforcement learning method is proposed to solve the EV charging/discharging management problem in an online manner. The actual travel pattern heterogeneity in a typical city, Shanghai, is taken as an empirical example. The DQN-RL method is further improved by adding the known departure time to the states. The results reveal a significant advantage of the improved DQN-RL method over the uncontrolled charging method.



Fully-Connected Neural Network

4. Conclusion and Future Research

Limitations

- We have to admit that this paper still has a few limitations, such as the lack of actual electricity prices in China. The actual real-time electricity prices in China will be very helpful for us to accurately evaluate the economical effects of V2G in China.
- The extra battery degradation is not taken into consideration in this paper, but in practice, high battery-swapping costs for the EV owners can occur if the V2G decreases the battery pack life.

Future research

- the action space can be changed from discrete space to continuous action space to reflect the variation of charging and discharging power.
- Moreover, this approach is the foundation to precisely evaluate the environmental and economical benefits of V2G.

Thank you for your attention !
Email: xuhao_research@ustb.edu.cn

