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Executive Summary  

Heavy-duty battery-electric trucks (BET) promise tremendous and immediate potential to reduce greenhouse 

gas emissions in road freight transport. However, their real-world application is still being questioned due to 

the limited electric range or insufficient charging infrastructure. Thus, our case study aims to assess the 

technical feasibility of urban and regional delivery in Germany based on real-world operational data. Our 

results demonstrate the importance of both vehicle and tour-specific analyses. With up to 600 kWh, we find 

nearly 40% of all transport performance and 60% of all trucks to be electrifiable, whereas intermediate 

charging, tour optimization, and adjusted truck-tour allocation can significantly increase both ratios.   

 

 

1 Introduction 

A broad consensus has been reached that cutting greenhouse gas (GHG) emissions rapidly and 

eventually reaching climate neutrality by 2050 is essential to comply with the Paris Climate Agreement, 

i.e., keep the global mean temperature below 1.5°C. Today and despite their rather minor significance 

in the total vehicle fleet, heavy-duty vehicles contribute about 8% of the total EU GHG emissions [1]. 

While several technological pathways for zero-emission trucks exist, battery-electric trucks (BET) 

benefit from the technological experience and recent battery innovations - i.e., costs, volumetric and 

gravimetric energy density, and fast charging capability [2–4] - and, thus, short-term large-scale 

availability [5]. The increasing manufacturer commitment toward BET further accentuates this shift [6].  

While several studies imply a great potential for urban and regional delivery with a daily mileage lower 

than 400 km [3], most recent studies even see long-haul transport close to a threshold where BETs 

become feasible [3, 4, 7]. Despite this commitment and literature-proofed feasibility, truck fleet owners 

are still questioning the technical feasibility of BETs for their application in light of limited vehicle 

range, insufficient public charging infrastructure, and payload restrictions [8, 9]. This individual 

reservation demands a shift from generalized assessments based on synthetic operating schedules [10], 

fleet analyses [11, 12], or standardized driving profiles and generic use patterns [2–4, 7, 13].  

Thus, we aim to evaluate the technical feasibility of BETs with a comprehensive case study by using 

real-world and per-vehicle operational data rather than generic driving patterns or synthetic operating 

schedules. We focus on urban and regional delivery in the German food retail sector. We examine four 

different truck classes and use vehicle- and tour-specific energy simulations while accounting for 

uncertainties. On top, we explore different potentials for increased truck fleet electrification by allowing 

for intermediate charging. We close with a discussion and appropriate recommendations.  
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2 Data and methods 
 

2.1 Data 

We use tour data from commercial tour scheduling software for two depots in the northeast region of 

Germany, within 220 km around Berlin. Our sample covers one month from 2021, roughly 9,500 

commuting tours, 543 retail stores, around 1 million km, and 224 trucks. These are trucks with a gross 

vehicle weight (GVW) of 18 or 26 tons as solo refrigerated trucks, truck-trailer combinations, and 

tractor-semitrailer combinations. The data covers information on the temporal sequence, route, and 

payload. These 9,500 commuting tours are chained to more than 4,000 daily tours. While Depot1 

primarily supplies Berlin and partially the metropolitan area, Depot2 additionally supplies the entire 

northeast region. Figure 1 shows both depot locations within the northeast region associated with 

individual retail stores (left) and tours (right). 

 

Figure 1: Data sample - Northeast Region: Customers (Left) and Tours (Right) 

 

2.2 Methods 
 

Energy simulation 

The technical feasibility involves a tour-specific energy simulation for each truck. Since exact time- or 

distance-based vehicle speed profiles are missing, we use a simplified modeling approach rather than 

detailed component-based vehicle models, such as used by [2]. 

We use the mathematical-physical vehicle model proposed by [14], for instance, also adopted by [3, 13], 

as a base version to account for vehicle dynamics and energy losses related to aerodynamic drag forces, 

frictional forces, and inertial forces. On top, we incorporate energy demand from both accessories and 

commodity cooling, restriction to the depth of discharge (DoD), and minimum residual range 

requirements. While 𝑬𝒒. 𝟏 shows the adjusted base version, 𝑬𝒒. 𝟐 shows our full battery capacity model. 

𝑬𝒒. 𝟑 shows our vehicle weigh calculation. Parameter and values are shown in Table 1 and Table 2.   
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𝐸𝐷𝑟𝑖𝑣𝑖𝑛𝑔 represents the net battery capacity [kWh] required to overcome all driving resistances. Major 

parameters are vehicle drag coefficient (𝐶𝐷), vehicle frontal area (𝐴), mean vehicle velocity (𝑣𝑎𝑣), root-

mean-square velocity (𝑣𝑟𝑚𝑠), mean vehicle acceleration (𝑎𝑎𝑣), tire rolling resistance coefficient (𝑐𝑟𝑟), 

trip distance (𝐷), and total vehicle mass (𝑚𝑇). Parameter (𝜕𝛼) approximates the average road gradient 

per tour. 𝜂𝑏𝑡𝑤 denotes the battery-to-wheels efficiency and summarizes battery discharge efficiency 

(𝜂𝑑𝑖𝑠) and  drivetrain efficiency (𝜂𝑏𝑡𝑤). The proportion of recoverable energy is specified via 𝜕𝑅𝑒𝑘𝑢.  

𝜂𝑏𝑟𝑘 accounts for additional braking losses. 

𝐸𝑇𝑜𝑡𝑎𝑙 represents the gross battery capacity [kWh] required to complete any tour successfully. 

Additional per-vehicle energy demand from accessories (pneumatics, hydraulics, heating and air 

conditioning (HVAC), on-board power grid) is approximated using mean power consumption per 

driving time, following [15, 16]. Likewise, the energy demand for commodity cooling is calculated. The 

mean power consumption - generally highly dependent on the temperature delta, the cooling volume, 

and the frequency of opening and closing - is calculated based on the ATP/DIN 8959. The temperature 

difference is assumed to be 25°C.  

𝑚𝑇 represents the total truck weight [kg]. We use a top-down approach starting from diesel truck values, 

suppose a common vehicle chassis, and then calculate the possible BET weight. Therefore, we subtract 

all major diesel powertrain-related components such as the ICE, gearbox, and fuel tank from the diesel 

curb weight (𝑚𝐶𝑢𝑟𝑏_𝐷). Afterward, we add major electric powertrain components such as motor and 

battery. For truck-trailers and tractor-trailers, we add the trailer curb weight. We close by including the 

tour-specific payload weight.   

Main uncertainties result from the energy consumption formula based on simplifying assumptions, 

technical vehicle parameters, and real-world operating conditions. We follow [14] and cast all major 

parameters using individual PERT distributions instead of running sensitivity analysis of selected 

parameters afterward to account for these uncertainties and increase robustness. Minimum, most likely, 

and maximum values are specified based on empirical data, literature values, or assumed to spread 

±20%. Finally, we perform a standard Monte Carlo simulation for each trip (n=100). Parameter spreads 

are indicated in the tables below. 

Vehicle-specific specifications like vehicle aerodynamics, tire rolling resistance, and diesel chassis curb 

weight are aggregated per truck class (lower quantile (Q25), median (Q50), upper quantile(Q75)) [17]. 

Tour-specific parameters like payload, mean vehicle velocity, trip distance, or timestamps for driving 

and stopping are taken from the tour scheduling software. An averaged road gradient is calculated based 

on truck routing software [18]. This involves a piecewise linearization of the reconstructed tour (500m 

steps) and the calculation of distance-weighted quantiles (Q25 and Q75) as minimum and maximum 

value. We adopt the most likely value from [14]. The root-mean-square velocity is calculated using the 

Steiner-König-Huygens theorem, including crosswind influence. The mean vehicle acceleration is 

approximated by cycle-specific values based on 18 different American driving cycles [19]. Since urban 

driving usually features higher dynamics due to stop-and-go traffic, traffic lights, or planned stops per 

distance than regional deliveries, we distinguish between both use cases.  

𝐸𝑡𝑜𝑡𝑎𝑙 =
𝐸𝐷𝑟𝑖𝑣𝑖𝑛𝑔 +  𝑃𝐴𝑢𝑥 ∙  𝑡𝐷𝑟𝑖𝑣𝑖𝑛𝑔 +  𝑃𝐶𝑜𝑜𝑙 ∙  (𝑡𝐷𝑟𝑖𝑣𝑖𝑛𝑔 + 𝑡𝑆𝑡𝑜𝑝𝑝) +  𝐸𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙   

𝜂𝐷𝑜𝐷  
  (2) 

𝑚𝑇 = 𝑚𝐶𝑢𝑟𝑏_𝐷 − 𝑃𝑀𝑜𝑡𝑜𝑟 ∙ (𝑚𝐸𝑚𝑜𝑡 − 𝑚𝐼𝐶𝐸) − 𝑚𝐷𝑃𝑇 + 𝐸𝑏𝑎𝑡  ∙ 𝜌𝐵𝑎𝑡 + 𝑚𝑇𝑟𝑎𝑖𝑙𝑒𝑟 + 𝑚𝑃𝑎𝑦𝑙𝑜𝑎𝑑     (3) 
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Table 1: Truck-class-specific simulation parameters. Ranges indicate the PERT distribution's minimum, most 

likely, and maximum values. Individual parameters are constant values. 

Parameter 18t 26t Truck-Trailer Tractor-Trailer Source 

𝑚𝐶𝑢𝑟𝑏_𝐷 [kg] 
5,761 -6,475 - 

7,125 

8,239 - 8,679 - 

9,073 

8,239 - 8,679 - 

9,073 

5,761 - 6,475 - 

7,125 

Q25-Q50-

Q75 [17] 

𝑚𝑇𝑟𝑎𝑖𝑙𝑒𝑟  [kg] - - 6,500 ± 20% 8,500 ± 20% 
derived 

from [15] 

𝐶𝐷 ∙ 𝐴 [m²] 
5.559 -5.698 - 

5.837 

5.463 - 5.997 - 

5.737 

6.557 - 7.839 -

9.179 

5.559 - 5.698 - 

5.837 

Q25-Q50-

Q75 [17] 

𝑐𝑟𝑟 [N/kN] 5.5 - 5.7 - 6.9 5.0 - 5.6 - 6.8 5.0 - 5.6 - 6.8 4.9 - 5.1 - 6.5 
Q25-Q50-

Q75 [17] 

𝑃𝐴𝑢𝑥  [kW] 2.97 ± 20% 3.39 ± 20% 4.32 ± 20% 4.11 ± 20% [15, 16] 

𝑃𝐶𝑜𝑜𝑙  
[kW] 3.11 ± 20% 3.11 ± 20% 5.90 ± 20% 5.14 ± 20% 

ATP/DIN 

8959 

𝑃𝑀𝑜𝑡𝑜𝑟  [kW] 200 - 228 - 265 265 - 323 -350 265 - 323 -350 331 - 355 - 368 
Q25-Q50-

Q75 [17] 

𝑣𝑆𝑡𝑑 [m/s] 0.413 0.417 0.744 0.677 [-] 

Table 2: Other simulation parameters. Ranges indicate the PERT distribution's minimum, most likely, and 

maximum values. Individual parameters are constant values. 

Parameter Value / Value range Source 

𝜂𝐷𝑜𝐷 [%] 90% ± 5% [13] 

𝜌𝐵𝑎𝑡 [Wh/kg] 150 - 175 - 225 [13, 14, 20] 

𝜕𝑅𝑒𝑘𝑢 [%] 50% ± 10% [14] 

𝑎𝑎𝑣  [m/s²] Urban: 0.331 ± 20%, Regional: 0.160 ± 20% Q25-Q75 [19] 

𝜂𝐵𝑇𝑊 [%] = 𝜂𝐵𝑇𝑊 (95% ± 2.5%) ∙ 𝜂𝑃𝑇  (90% ± 2.5%) [13, 14] 

𝜂𝑏𝑟𝑘 [%] 97% [14] 

𝑣𝑅𝑀𝑆 [m/s]  = √𝑣𝑎𝑣
2 + 𝑣𝑠𝑡𝑑

2   + 𝑣𝑊𝑖𝑛𝑑  (3 ± 20%) 
Modelled based on [14] and 

VECTO [21] 

𝐸𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙  
[kWh] 30 Own assumption 

𝑝 [kg/m³] 1.15 - 1.225 - 1.3 Own assumption 

𝑚𝐸𝑚𝑜𝑡  [kg/kW] 1.43 [22] 

𝑚𝐷𝑃𝑇 [kg] =  𝑚𝐺𝑒𝑎𝑟𝑏𝑜𝑥 (300 kg) + 𝑚𝑇𝑎𝑛𝑘 (108 kg) = 408 kg Own calculation based on [2] 

𝑚𝐼𝐶𝐸 [kg/kW] 3.3 [23] 

𝑚𝑃𝐿 [kg] Base value from truck schedule (± 20%) Own assumption 

𝑃𝐶ℎ𝑎𝑟𝑔𝑒,𝐷𝑒𝑝 [kW] ∈ {50,150,250,350,450,1000} 
Own assumption based on 

common charging standards 

𝑃𝐶ℎ𝑎𝑟𝑔𝑒,𝐶𝑅 [kW] 150 Own assumption  

𝑟𝑁𝐶𝑃 [%] 75% ±10% Own assumption  

𝜂𝑁𝐶𝑃 [%] 68.1% (184/270) - 82% (164/200) - 92.6 % (250/270) [24] 
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For each truck, gross battery capacities between 100 and 800 kWh are simulated in 50 kWh increments 

and compared against the required battery capacity per tour. We include higher permitted GVW limits 

for BETs in Germany, i.e., up to 2 tons depending on truck class [25]. If the required battery capacity is 

lower than the simulated battery capacity minus DoD restrictions and the permitted GVW is not 

exceeded, this simulation run (note n = 100) per daily tour is labeled "technically feasible". If at least 

90% of all simulations runs are labeled as "technically feasible", we label this daily tour as "technically 

feasible". If all daily tours per vehicle are labeled "technically feasible", we affirm the BET replacement 

for this truck and denote the simulated gross battery capacity. Note that this is very restrictive, as just 

one daily tour might negate BET replaceability.  

Scenarios and premises:  

There is no tour optimization, truck re-allocation, or adjusted scheduling for all calculations. Tours are 

presumed to be exactly as of February 2021 so that potential BET would mimic the existing diesel truck 

schedule. There is no opportunity to charge during mandatory driving breaks, as these coincide with the 

stops at customer retail stores. Thus, private charging infrastructures would be the only possibility to 

avoid time losses.  

Our base scenario (S0) assumes that vehicles depart from the depot fully charged in the morning, and 

installed gross battery capacities must be sufficient throughout the day. Additionally, we investigate the 

effect of private destination charging to extend vehicle coverage. Thus, we integrate potential 

intermediate depot-charging within the depot premises (S1) that might happen directly at the cargo 

terminals during vehicle commodity loading (𝑡𝐿𝑜𝑎𝑑𝑖𝑛𝑔). Additionally, we investigate the effect of 

charging opportunities at individual customer retail stores (S2), where the stopping time (𝑡𝑆𝑡𝑜𝑝𝑝) at the 

local cargo terminals might be used for charging. We still assume that vehicles depart from the depot 

fully charged in the morning. In both scenarios, vehicles recharge without time losses, and the tour 

schedule is maintained.  

For both scenarios, we approximate the state of charge (SoC) evolution throughout any tour based on 

consumed energy (driving, accessories, and cooling) per traveled distance. For depot charging, we 

consider six different peak charging powers (𝑃𝐶ℎ𝑎𝑟𝑔𝑒,𝐷𝑒𝑝). For individual retail stores, we explore the 

effect of 150 kW peak charging power (𝑃𝐶ℎ𝑎𝑟𝑔𝑒,𝐶𝑅) at any retail store. The latter might be in line with a 

joint passenger car charging infrastructure deployment at local customer parking lots. We use an average 

charging power across the whole SoC-corridor based on peak charging power, empirical findings on net 

charging power 𝜂𝑁𝐶𝑃 from passenger cars, and a 2C charging rate limit. Parameters are included in 

Table 2.  

Result evaluation 

We distinguish between 3 different aggregation levels for our evaluations. This allows us to better 

quantify different potentials. First, we examine the technical feasibility at the truck level. In contrast, 

we aggregate results on individual daily tours and, thus, exclude any truck allocation to explore and 

approximate a green-field-like vehicle scheduling. However, the daily trip chains are untouched. Last, 

we aggregate ton-kilometers (tkm) per daily tour as a common metric in transport statistics. The latter 

incorporates information about short and light-loaded tours versus long and heavily-loaded tours. All 

calculations are performed on a standard Lenovo notebook with i7-8565U @1.8 GHz and 16 GB RAM.  
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3 Results 

Daily mileage and timestamps 

The daily operating distance are visualized in Figure 2. The visualization splits per truck class and depot 

location and involves individual values as scatter and boxplots. The daily operating distance typically 

ranges from 46 to 105 km (25% and 75% quantile) for Depot1 and from 143 to 384 km for Depot2. 

Across both depots, there are typically 1 to 5 commuting tours per day while serving 1 to 4 customer 

retail stores per commuting tour. Solo trucks focus on Berlin and the metropolitan area, while truck-

trailer and tractor-semitrailer combinations also supply the entire northeast region. Daily mileages in the 

urban and metropolitan deliveries are usually less than 200 to 300 km, while up 500 to 700 km may be 

typical for regional deliveries. However, over 1,000 km are possible in multi-shift and cross-daily 

operations. 

 

Figure 2: Evaluation of daily operating distances per truck class and per depot location. Sample points are 

scattered, whereas the boxplots indicate the lower quartile, median, and upper quartile. Own illustration.  

Vehicle scheduling specifies four timestamps, from vehicle loading at the cargo terminals within the 

depots (𝑡𝐿𝑜𝑎𝑑𝑖𝑛𝑔), driving time (𝑡𝐷𝑟𝑖𝑣𝑖𝑛𝑔), stop time at customer retail stores (𝑡𝑆𝑡𝑜𝑝𝑝), and eventually 

vehicle unloading at the cargo terminals to complete one single commuting tour. An evaluation 

including single values and boxplot per category is shown in Figure 3, combining both depots. While 

vehicle loading typically takes 70-105 minutes, customer stops last similar (71-114 minutes), yet 

unloading takes only 15-22 minutes. As mentioned earlier, additional breaks such as the mandatory 4.5h 

driving break are not scheduled as these are covered at customer stops.  

 

Figure 3: Evaluation of vehicle operating times across both depots. Sample points are scattered, whereas the 

boxplots indicate the lower quartile, median, and upper quartile. Own illustration. 

Comparing timestamps from planning against actual data reveals certain deviations so that specified 

planned times for stops, vehicle loading, and vehicle unloading are usually undercut, whereby exceeding 

is also possible.  This means that only 65% to 85% of the specified planned times are usually obtainable. 

We multiply all timestamps and reduce the possible charging time by this fraction (𝑟𝑁𝐶𝑃) to gain high 

confidence for net charging time. We set 10 minutes as the minimum charging time. In total, we ensure 

practical implementation and approximate potential time losses for waiting, vehicle docking, or 

connecting to the charging station.   



7 EVS35 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium — Full Paper 
 

Specific energy consumption: 

Figure 4 shows our simulation results as specific energy consumption per km. To illustrate the spread, 

the left side visualizes the energy consumption as a density plot per truck class over different battery 

capacities. Note that the density plots extrapolate beyond simulated battery capacities. The right side 

shows the sample-weighted boxplot per truck class, whereas fliers and whiskers are removed. All plots 

comprise only feasible tour-battery combinations. The sample-weighted median spans from 1.01 

kWh/km median for the 18 t solo truck, 1.14 kWh/km for the 26 t solo truck, and 1.52 kWh/km for 

tractor-trailer, to 1.66 kWh/km for the truck-trailer combination. Depending on the truck class and 

driving time, around 0.1 to 0.4 kWh/km may be attributed to accessories and commodity cooling.  

 

Figure 4: Specific energy consumption (kWh/km) per truck class. Left: Density plot over battery capacity. Right: 

Sample-weighted boxplot per truck class (median plotted, fliers and whiskers removed). Own illustration. 

 Base scenario S0 - Feasibility without additional charging:  

The effect of different battery capacities on BET feasibility aggregated per truck class is visualized 

Figure 5. The y-axis (CDF - cumulative density function) indicates the share of vehicles that would 

cope with this or less battery capacity throughout each vehicle's numerous trips. Remark that we require 

all daily tours per vehicle to be technically feasible to affirm its BET replaceability. 

For Depot1, battery capacities from 100 to 200 kWh for 18t solo trucks and 100 to 350 kWh for 26t solo 

trucks are sufficient to electrify all these vehicles. The truck-trailers (450 kWh) and tractor-trailers (550 

kWh) require larger batteries than solo trucks. For the latter, the highest gains are between 300 and 500 

kWh. Overall, around 600 kWh may be sufficient to affirm full fleet BET replaceability. These battery 

capacities are already available today. The drop at around 600 kWh for 26t solo trucks indicates the 

GVW exceeding. However, such large batteries are not needed for Depot1. 

For Depot2, the feasibility is significantly lower, and larger batteries are required. This mainly affects 

truck-trailers and tractor-trailers. In total, well above 200 kWh are required in all classes. The vast 

majority (80%) of 18t solo trucks range between 200-350 kWh, while 200-600 kWh are required for 26t 

solo trucks. Around one-third of tractor-trailers and 15% of truck-trailers are technically feasible with 

around 600 kWh. The wide-stretched plateau for truck-trailers is striking. Overall, 29% of the total fleet 

can already be electrified with just 400 kWh, 51% with 600 kWh, and 64% with 800 kWh.  

The aggregated assessment across both depots indicates 50% BET replaceability with 400 kWh, 60% 

with 600 kWh, and 66% with 800 kWh.  
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Figure 5: BET feasibility per truck class (on truck-level) Left: CDF over battery capacity for Depot 1. Right: 

CDF over battery capacity for Depot 2. Own illustration. 

Figure 6 focuses on tours and ton-kilometers and, thus, neglects vehicle allocation.  The y-axis indicates 

the share of feasible daily tours and electrifiable transport performance (tkm) with this or less battery 

capacity. For Depot1, battery capacities between 200 and 300 kWh are sufficient to electrify 80 to 90% 

of all tours. 400 kWh are sufficient to electrify almost all trips, though a few long and heavily loaded 

trips are omitted. As the previous analysis showed, around 600 kWh may be sufficient to affirm full 

BET replaceability. For Depot2, one-half of all tours can be electrified with about 400 kWh and up to 

65% with 600 kWh. Nearly 80% may be possible with up to 800 kWh. The highest gains are between 

150 and 250 kWh, decreasing towards 400 kWh. The high difference in transport performance shows 

that especially long or heavily-loaded tours are not feasible. Here, feasibility is around 20% for 400 kWh 

and around 35% for 600 kWh. The aggregated assessment across both depots indicates that 67% of all 

daily tours can already be electrified with just 400 kWh and 75% with 600 kWh. In contrast, this equals 

only 26 to 39% of all tkm.  

 

Figure 6: BET feasibility per depot on tour- and tkm-level Left: CDF over battery capacity for Depot 1. Right: 

CDF over battery capacity for Depot 2. Own illustration. 

Our base scenario highlights three main findings: (1) There is no one battery capacity per truck class, 

even within one fleet. Thus, a vehicle-specific examination for the right battery capacity that ideally 

matches the vehicle's operating profile is crucial. This is in line with the modular battery capacities 

offered by the manufacturers to avoid unsuitable battery capacities. (2) If the vehicle allocation is 

neglected, the tour feasibility is significantly higher than on truck-level. Often, a few unfeasible tours 

are the crunch. This implies certain potential by re-allocating daily tours within the truck fleet. This 

might tend to mixed fleet considerations, where most tours are done with BETs, and minor shares remain 

for (already existing) diesel trucks. (3) Long and / or heavily-loaded tours are most challenging.  
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Scenario comparison S1 & S2 - The influence of intermediate charging:  

For our scenario evaluation, we aggregate both depots. Results are visualized in Figure 7, where the 

color scale indicates technical feasibility. The median (50% threshold) is given in white. Results for 300 

and 600 kWh once without depot-charging (0 kW) and once with depot-charging (350 kW) are 

highlighted per scenario. We limit to truck-level at the left-hand side and tkm-level at the right-hand 

side. The upper row corresponds to S1 and quantifies the effect of intermediate depot-charging only. 

Thus, the x-axis (i.e., 0 kW charging power) matches the base scenario. The lower row corresponds to 

S2 and includes intermediate charging at customer retail stores throughout any trip.  

For S1, we find 33-67% of all trucks to be replaceable with currently available BET technology (up to 

600 kWh and 350 kW depot-charging). This equals 20-48% of all tkm. For S2, we find up to 63-74% of 

all vehicles to be replaceable. In particular, the feasibility of lower battery capacities increases. At tkm-

level, this equals 41-70%.  

Overall, our scenarios highlight four main findings for currently available technology: (1) Higher 

charging power leads to higher feasibility with smaller batteries. However, this effect saturates beyond 

350 kW. (2) Higher sensitivity towards installed battery capacity rather than charging power. (3) 

Intermediate charging options at retail stores enable an increase of roughly 20% of electrified tkm. (4) 

Full electrification fails in any scenario, indicating further actions such as tour optimization and adjusted 

scheduling (e.g., SoC-based). Note that daily trip chains are untouched. If the energy demand from 

commodity cooling were neglected in S2, results would have been higher by a single-digit percentage 

at tkm-level, and full fleet electrification would have been almost affirmable for standard trucks.   

Figure 7: Scenario Analysis. Variations for battery capacity [kWh], depot-charging power [kW] and customer 

charging availability. Left-hand side: Vehicle-level.  Right-hand side: tkm-level. Own illustration 
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4 Discussion  

The following discussion includes tour data, representativeness, energy consumption modeling, 

charging assumptions, and battery aging.   

(1) Tours and vehicle allocation are presumed to be exactly as of February 2021 so that potential BET 

would mimic the existing diesel truck schedule. While we assume that all trips must be technically 

feasible to classify one truck as technically feasible for our vehicle-level aggregation, we depart from 

this rather restrictive assumption for tour- and tkm-level. Nevertheless, daily trip chains are untouched 

and could be optimized. 

 (2) We acknowledge that our food-retail case study may not be representative for the entire German 

distribution logistics and road freight transport since each industry has its unique characteristic usage 

patterns and constraints. However, we analyzed four different truck classes covering about 87% of the 

German N3 truck stock [26]. Our calculated annual mileage is typically from 15,000 km to 124,000 km 

(10% and 90% quantile), with a mean value of 56,000 km and a median of 42,000 km. Our annual 

mileage is lower than official statistics [27] and driving data surveys [28]. However, pure long-haul 

transport is missing in our data but included in the others.  

(3) Uncertainties for our simulated energy consumption result from the simplified simulation approach, 

no dynamics within one trip and, naturally, only catching certain variations and irregularities, no detailed 

component-based simulation, and the underlying generic vehicle specifications. Nevertheless, our 

results are consistent with other studies [2, 3, 7, 10] even though large-scale empirical real-world data 

from series BET is missing today. Since we define the SoC as a function of traveled distance, we ignore 

any fluctuations that may limit real-world feasibility.  

(4) For convenience, we assume that charging is available at all retail stores. Plus, all cargo terminals 

for depot loading are equipped with charging infrastructure. Thus, we assume 100% availability at any 

time. While this mirrors a full rollout, it seems intuitive that charging infrastructure may not be built at 

all cargo terminals or cannot be built at all retail store locations due to different constraints (e.g., costs, 

available space, and grid connection). Different optimization approaches may be used to determine the 

relevant locations or the optimal number of equipped cargo terminals.   

(5) We neglect battery aging effects (i.e., cyclic and calendar). Typically, the battery state-of-health 

(SoH) would decrease to 70-80% toward an ending truck service life. This impacts technical feasibility, 

assuming that the truck-tour allocation remains identical over the whole service life. In contrast, 

assuming more variable vehicle planning, newer trucks might master the more difficult daily tours given 

a typically ongoing truck fleet renewal, while older trucks perform on easier daily tours (i.e., SoH-based 

tour allocation). To approximate aging, one might chose the next higher battery increment when 

affirming the feasible battery capacity threshold per truck. 

 

5 Conclusion  

Our case study quantifies the technical feasibility of BET for urban and regional delivery in Germany, 

covering over 9,000 real-world tours, over 540 customers, and more than 200 heavy trucks from 4 

different truck classes (all N3) operating within only 220 km around Berlin. We see 200-300 km as daily 

mileage in urban delivery, while 500-700 km are typical for regional deliveries.  

We find high potential for BET feasibility even if we exactly mirror the existing operating schedule for 

diesel trucks. With up to 600 kWh and no additional charging infrastructure, we reach 39% of electrified 

tkm and may replace nearly 60% of all trucks. We find no one battery capacity per truck class but high 

heterogeneities, even within just one fleet. Thus, fleet owners and shippers should carefully evaluate the 
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modular battery sizes offered by the manufacturers to find the most suitable capacity per truck. However, 

this also limits flexible and universal vehicle planning. Interim charging options at the depot (S1) or at 

individual retail stores (S2) boost feasibility and almost double the electrified tkm. Here, intermediate 

charging offers little added value for urban delivery and the effect is greater for regional deliveries. The 

individual effect of each measure is larger than the combined effect and, thus, should be balanced against 

each other. Holistically, one must optimize the installed battery capacity per truck and balance the 

overall truck fleet versus all potential charging stations from a techno-economic standpoint. However, 

there is an overall higher sensitivity to battery capacity given long individual journeys than additional 

depot charging. In any case, overnight charging at the depot is crucial. 

While further fast-charging at public charging points (note: usually associated with off-site charging 

costs and time loss) might further increase these shares, tour optimization, truck re-allocation, and 

adjusted tour schedules embedded significant potential without additional structural measures and costs 

(note: neglecting planning costs). Many studies see mandatory driving breaks combined with public 

fast-charging points as one key to an all-electric future. However, the real-world potential for urban to 

regional deliveries may be limited since mandatory breaks coincide with stopping points, and the private 

development of fast-charging points (350 to 1000 kW) may be questionable. 

Given our findings, representativeness, and the literature-proofed general feasibility, we recommend 

that all fleet owners and shippers start examining their transition to climate-friendly commercial 

vehicles. We emphasize the necessity of finding the right battery capacity per truck by analyzing its 

operational patterns, as well as the ad-hoc potential through tour optimization and variable truck-tour 

allocation (i.e., SoC- and SoH-based). Further research should focus on more case studies from other 

relevant industries, highlight custom pitfalls in daily operations, and enhance to economic evaluations.  
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