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Executive Summary

Lithium-ion battery systems require an efficient battery management, the respective design of which
must fit the different requirements of the specific application. To achieve this, various types of algo-
rithms have been designed in academia and industry. In this work, a Model-in-the-Loop approach is
presented to evaluate and compare such algorithms under realistic and reproducible conditions across
the entire operating range. This allows to choose the most suitable set of algorithms for an application.

Keywords: battery, battery management, BMS (Battery Management System), diagnosis, state of charge,
testing processes

1 Introduction

In recent years, rapid improvements in battery technologies, in addition to decreasing prices, have led to
their widespread use in various applications [1]. Lithium-ion batteries have become established in the
vast majority of sectors, due to their high energy and power density, efficiency and service life. In ad-
dition to power tools and multimedia applications, this includes stationary applications of various sizes,
as well as all levels from micro hybrid to fully electric vehicles. Depending on the application needs,
lithium-ion batteries, therefore, cover a wide range of energy and power densities as well as cyclic and
calendar life [1].

Regardless of the application, it is crucial to accurately determine various states of the battery while it
is in use. This task 1s performed by a Battery Management System (BMS). Diagnostic algorithms on
the BMS determine values like the State of Charge (SOC), State of Health (SOH) and State of Power
(SOP) of the battery in order to ensure its safety and optimal utilization [2]. The widespread use of
lithium-ion batteries in various applications requires a comprehensive set of different diagnostic func-
tions and methods. Consequently, numerous diagnostic algorithms have been developed and published
for lithium-ion batteries. Typically, these are designed, parameterized and validated for a specific ap-
plication and certain boundary conditions [3][4]. However, the accuracy, robustness and computational
speed of most algorithms is affected by different load profiles, cell types, and BMS hardware, among
other factors [2][4][5][6]. Therefore, a systematic assessment and direct comparison of the performance
of algorithms from literature is not possible. However, in order to make a suitable selection of algorithms
for an application, it is necessary to assess them under preferably equal conditions [6].
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In order to investigate the aforementioned effects, this work presents a Model-in-the-Loop (MiL) toolchain
for BMS that has been developed and implemented. A structural overview of the toolchain is given in
Fig. 1. To demonstrate the benefit of the proposed method and to validate the toolchain, a basic set of
SOC estimation algorithms is investigated within this work. A large number of simulations is carried out
under systematically selected boundary conditions e.g. varying in load profile, temperature, and initial
battery state. In addition, different cell chemistries, cell sizes and pack topologies can be considered.
Key figures like estimation accuracy, drift, and transient response, as well as noise and offset stability are
determined automatically in each case. These key figures are then evaluated across all boundary condi-
tions and converted into scores based on user-definable threshold values. These can then be visualized
in radar plots, as shown in Fig. 11. This achieves the set goal of evaluating algorithms systematically,
across the entire operating range, and appropriately for the application.
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Figure 1: Structural overview of the simulation and validation environment

2 Lithium-ion battery diagnostics

Compared to other technologies, lithium-ion batteries offer high performance, yet only operate in a
comparably small safe operating area. In order to allow safe operation, a BMS is required to determine
the state of the battery, to keep it in the safe operating area and to utilize the full battery capacity and
power. This not only guarantees safety, but also ensures that the battery life does not prematurely end.
The use of appropriate, often model based diagnostic algorithms allows the battery to be better utilized,
thus improving the cost-benefit ratio.

The first and foremost task of a BMS system is to maintain the safe operating area of the battery. This
is usually achieved by applying fixed voltage, current and temperature limits, the exceeding of which
leads to the system being shut down [2]. A further task is the determination of different battery states
for optimized control and utilization of the battery system or visualization for the user. These include
the state of charge (SOC), the state of available power (SOP) as well as the state of health (SOH) and
the estimation of the remaining useful life (RUL) [5]. With the knowledge about the battery states, many
algorithms, e.g. for charge equalization between the cells and for optimized charging can be executed
more precisely.

3 Simulation and validation environment

3.1 Overview

The implemented Model-in-the-Loop simulation and validation environment is structured as shown in
Fig 1. It covers the parts described below and marked in bold in the text. In addition to real, recorded load
profiles from various applications, simulated profiles of various vehicle topologies, as well as synthetic
current profiles, can be used as Application input data. A high precision equivalent circuit Battery Pack
model parameterized by both, electrochemical impedance spectroscopy and time domain pulse measure-
ments and modelled on cell level is used as the reference. The output of the battery pack model consists

of high resolution pack (U, I)) and single cell (ﬁ , 1)) voltages and currents, temperatures at defined sensor
points (7") and the impedance of the cells (£). Based on the toolchain, the diagnostic algorithms using
more simplified battery models are tested against the reference. The BMS Model includes the simulation
of the entire signal path through the BMS hardware and software as detailed in Fig. 5. It converts the
data into digital values with limited accuracy, as it happens in a real system. The resulting digital data
values (U*,[*,U*, T*) are then processed by the diagnostic algorithms. Various diagnostic algorithms
can be implemented to estimate battery states such as state of charge (SOC™), state of health (SOH™*) or
state of power (SO P*) of the battery system. In the Reference State Calculation the reference battery
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states (SOC, SOH, SOP) are determined in parallel with maximum resolution of the signals and tak-
ing into account additional information from the battery model (i.e. impedance, capacity, overvoltages).
At the end of the signal chain, the Evaluation Module compares the determined battery states with
the reference states. Further external processing of the data also allows the comparison between differ-
ent implementations or algorithms the diagnostic tasks. Thus, it is possible to investigate and compare
diagnostic algorithms under equal but freely definable boundary conditions.

3.2 Application Model

The application model is the starting point of the toolchain. In this block a certain application profile
is selected and scaled according to the specific battery chosen. A possible origin for such a application
profile is a recorded data set from the application, e.g. a stationary storage system used for primary
control reserve or a drive cycle of a BEV. Alternatively, two types of synthetic profiles can be used with
the toolchain. The first type of synthetic profiles is generateg from standardized operating or driving
Eroﬁles utilizing a simulation model of the application. This can be, for example, the WLTP cycle
nown from combustion vehicles, or cycles adapted for electric vehicles and their recuperation capability
as described in [7]. For this purpose, a vehicle model was integrated into the toolchain, which makes it
possible to convert specified speed profiles with different vehicles and vehicle topologies (full electric
vehicle, serial and parallel hybrid vehicle, mild hybrid vehicle) into power profiles, as shown in Fig 2.
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Figure 2: Load cycle Sporty Mid Daily Use from [7] transformed into battery power of 48V mild hybrid vehicle
by a vehicle model

The second type of synthetic profiles are test profiles especially designed for the validation of BMS
algorithms. One implemented example is the symmetrical, mean value-free signal of characteristic fre-
quencies of the application, adapted from [6] and shown in the upper half of Fig 3. Among others, it can
be used to analyze possible drifts in the SOC estimation. Such a profile is either directly simulated at
various battery states or integrated in a master profile and therefore executed at different battery states,
e.g. different SOCs as shown in Fig 3 at the bottom.
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Figure 3: Top: Example synthetic load profile, Bottom: Master profile with integrated synthetic load profile at
three SOCs
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3.3 Battery System Model

The battery system model is used to simulate the behavior of the interconnected battery cells, not taking
into account the electronics. The basic part for this work consists of a physico- chemlcally motivated
electric equivalent circuit battery cell model shown in Fig 4 and describecg) in [8] and [9], but could also
be replaced by other validated high precision models or for some cases single cell measurements with
the specific application profile from a test bench. This battery cell model is run for all cells in a module
with statistically slightly modified parameters. In order to be able to provide pack sizes, the simulated
values are then scaled from module to pack according to a definable topology.
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Figure 4: Physically motivated battery cell ECM from [9]

3.4 BMS Model

The BMS Model part covers the behavior of the battery pack electronics to ensure that the algorithms are
tested under real life conditions. It divides into a BMS hardware emulation and the diagnostic algorithms.

3.4.1 BMS Hardware Emulation

The complete signal path of the measured values from the sensors to the algorithms running on the BMS
is modelled (compare Fig 5). The BMS hardware emulation reproduces the signal path of the hardware
developed at the authors institute, but can be adapted to other BMS hardware. Fig 5 shows in detail the
processing of the cell voltages, which is similarly done for temperatures and pack values.

Cell Supervisory Controller
CAN

Voltage Voltage Signal Processing .
~ | Sense ~ Emulation
Lines Y +1HJ-H _F’J_ u I_

| Temperature Signal Processing | l g _I"I U T

=1}
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Figure 5: BMS emulation structure

In a first step, a simple resistance model of the voltage sense lines processes the cell voltage in order to
consider a possible influence of balancing currents through the sense lines. Entering the printed circuit
board of the Cell Supervisory Controller, often called “BMS Slave”, the analog signal (which is repre-
sented in the simulation environment via maximum resolution) is low-pass filtered. The emulation further
samples the resulting data, according to the specifications of the front-end chip, with 100 Hz. After ap-
plying additional noise and a possible sensor offset characterized from own measurements and datasheet
values, the signal is quantized to the bit-length of 14 bit used in the BMS. In the CAN transceiver module
the data is down-sampled once more to 10 Hz and in case of the single cell voltages converted to a lower
resolution of 1 mV. The resulting values are used as input to the diagnostic algorithms.
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3.4.2 Diagnostic Algorithms

The diagnostic algorithm environment is designed in a modular structure, which allows a simple ex-
change of individual algorithms. Fig 6 presents an overview of the considered BMS algorithm modules
and is divided into the four domains ‘Battery Model’, ‘State Estimation’, ‘Aging Estimation’ and ‘Battery
Control’.

Battery Model State Estimation Aging Estimation Battery Control
ECM OoCcV SOH Balancing
| P2D SOC / SOE ' RUL | | |! Charging !
__________ 1 [ ———— ) [N ———— |
SOP
Memory

Figure 6: Overview of the modular diagnostic algorithm environment

In the *Battery Model’ part different model variants can be implemented. In the simplest case, this is a
static first order Thevenin model, but can also be replaced by higher order electrical models including
online adaptation or even a physico-chemically motivated Pseudo-2-Dimensional Model (P2D) can be
integrated. The algorithms summarized under ’State Estimation’ determine the states of the battery
immediately influenced by the operation and thus cover relatively short periods of time. In contrast, the
algorithms implemented under *Aging Estimation’ depict the changes occurring in the battery over a
longer time horizon. This mainly concerns the loss of capacity and the increase of the internal resistance.
Additionally, an estimation of the remaining useful life (RUL) would be implemented in this part. Finally,
the algorithms that have a retroactive effect on the battery are summarized under ’Battery Control’. This
always includes a balancing strategy, but for example special model-based charging strategies could
also be implemented. Modules with solid outlines are equipped with basic implementations, whereas
modules with dashed lines indicate that they can be implemented optionally or are beyond state of the
art. The data exchange between the algorithm modules is realized via a common buffer memory. This
is necessary because some algorithms rely on the results of others. This structure can now be used for
algorithm evaluation. To do so, one or more modules, provided as libraries, are replaced by alternative
implementations and the results are compared with the reference states and the previous implementation.

3.5 Reference State Calculation

The reference state calculation uses the high-resolution data from the reference battery model to calculate
as precisely as possible the battery states that are estimated by the diagnostic algorithms. For this, the
data used 1n this block includes data which typically can not be measured (e.g. impedance, available
capacity, overvoltages, internal potentials) and therefore is not available for the diagnostic algorithms,
but is directly available in the reference model. The resulting states then serve as reference for the values
generated with the diagnostic algorithms.

3.6 Evaluation Module

The evaluation module compares the respective signals from the BMS algorithms and the reference state
calculation. For this, typical comparison values for the estimation accuracy, such as the absolute error
(AE), mean squared error (MSE), the mean signed deviation (MSD) and the average deviation (AD) are
calculated. To address the issue of comparability, the estimation algorithms are %urther evaluated sys-
tematically for drift, offset stability, noise stability, transient behaviour as well as temperature stability
by multiple simulations and their analysis. For this purpose, drift is defined as a measure that deter-
mines the tendency of the estimated values to deviate from the reference values over time. Since the
estimated values typically are non-linear for batteries, the regression line of the estimation error is used
to determine the drift score. Offset stability is derived by analyzing the influence of different errors of
the measurement system (i.e. current sensor offset, voltage sensor offset, temperature sensor offset) and
changes in the battery (i.e. cell resistance, cell capacity) on the estimated values. Noise stability is tested
by adding multiple levels of normal distributed, mean value-free signal noise to the values determined
by the different sensors. To analyze the transient behaviour, the algorithms are initialized with a false
initial value and the time until a threshold of acceptable accuracy is reached, is investigated. Test profiles
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are conducted at different surrounding as well as initial temperatures to investigate the stability of the
diagnostic algorithms against normal as well as harsh environmental conditions.

Even if a direct analysis of the simulation results in terms of accuracy and stability is relatively easy if
only a few simulation results are to be evaluated, there are too many simulations to be analyzed in a sys-
tematic approach like the one presented here. Therefore, in order to evaluate the results comprehensively
in a simply way, while still assuring comparability among the estimation algorithms, a benchmarking
method based on a error-limit score is used. In this approach, a score point system from O (worst) to 5
(best) is applied. For visualization, the benchmark scores of the estimation algorithms in each test profile
are averaged and depicted in a radar plot as shown in Fig 7.
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Figure 7: Radar plot for visualization of averaged algorithm scores

4 Exemplary results and discussion

4.1 Testset description

In this section exemplary results and scores of three SOC estimation approaches for a full electric vehicle
application are showcased. All simulations are carried out using a high precision reference model of
a lithium-ion 13.15 Ah battery cell with NMC vs. graphite chemistry. For this work a total of 224
simulations have been executed and analyzed to cover the different combinations of evaluation aspects
and surrounding temperatures.

Three different input profiles (low dynamic load, high dynamic load, long-term stability) were used
for this, of which the low dynamic load profile variant is depicted in Fig 3. Prior to the validation
experiment, the modeled battery is initialized at a SOC value of 50% for the low dynamic profile and
long-term stability profile. Whereas for the high dynamic profile, the battery cells are 1nitialized at 100%.
The resulting reference SOC course for all three profiles is shown in Fig 8.
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Figure 8: Reference SOC course for low dynamic (left), high dynamic (middle) an long-term stability (right)
profiles

The following three SOC estimation algorithms have been investigated in this work:

At first, a standard coulomb counting approach, extended by full charge detection and OCV recalibration.
A very basic way of SOC estimation with low computational cost, in which the measurement values from
the current sensor are integrated, divided by the capacity of the battery to obtain a relative value, and
lastly summed with the initial SOC level to gain the current SOC level of the battery. Secondly, a model
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based approach with low computational effort, utilizing a 2-RC model and a Recursive Least Squares
(RLS) algorithm with two forgetting factors. It is a mathematical optimization method to predict the
parameters of an over-determined linear equation-system based on previous data with minimal quadratic
error between predicted and measured values as constraint. In this implementation, the OCYV is estimated
using the RLS algorithm on the equivalent circuit model and the SOC is then determined based on a OCV-
SOC lookup table. Lastly, a Dual Unscented Kalman Filter (DUKF) approach on a 3-RC model, with
much higher complexity as well as computational effort. In this implementation, two Unscented Kalman
Filters being responsible for for the parameter estimation and the state estimation respectively are coupled
in such a way that estimation of the SOC is possible with better accuracy, while the computational costs
remain at the level of a single UKF.

4.2 Results

In this section the accuracy scores for the RLS based SOC algorithm are exemplary shown. For a
better understanding of the scores, some examples of the SOC estimation courses over time at dif-
ferent temperature levels with the low dynamics profile are also given. Table 1 shows the estimation
accuracy score (Scoresccuracy), Offset stability score (Scoreofset, Accuracy) and noise stability score

(Scorenoise, Accuracy) Of the RLS algorithm for all temperatures and test profiles.

Table 1: Resulting accuracy scores for the RLS algorithm

SOC_RLS -10°C  0°C  10°C  25°C  40°C  60°C 80°C | Scoretemp,Accuracy
Low Scorepceuracy 1.8 1.9 2.4 3.0 3.1 3.1 3.1
Dynamic Scoreotiset, Accuracy 4.9 4.9 4.8 4.7 4.6 4.6 4.6 3.9
. ScoreNoise, Accuracy 4.8 4.8 4.6 4.5 4.4 4.4 4.4
High Scoreaccuracy 1.1 1.2 1.3 1.4 1.4 1.4 1.1%
Dynamic Scoreofrset, Accuracy 4.8 4.7 47 4.7 4.6 4.6 4.6 4.8

ScoreNoise, Accuracy 4.9 4.9 5.0 5.0 5.0 5.0 5.0
25°C — 80°C — —10°C — 25°C

Score acy 3.3
Long-term Accuracy
ahilitv ScoreoffsetjAccumcy 4.3 -
Stability k .
Scor €Noise,Accuracy 4.3

From Table 1 we can observe that the RLS method has relatively poor estimation accuracy and their
estimation accuracy scores vary under the influence of ambient temperature. The Scoreaccuracy 18
in the range of 1.8 to 3.1 in the low dynamic profile and 1.1 to 1.4 in high dynamic profile respec-
tively. It 1s visible that the estimation accuracy reduces with decreasing temperature, this can also be
observed in Fig 9. This behaviour is caused by the higher impedance values at lower temperatures,
which are not adequately adjusted by the implemented RLS algorithm. The spread of this result yields
in a Scoreremp, Accuracy = 3.9 in low dynamic profile and Scoreremp, Accuracy = 4-8 in high dynamic
profile. The estimation algorithm behaves comparably stable against offset and noise influences. Its
Scoreof fset, Accuracy and § COT€ Noise, Accuracy are consistently above 4.6 in both low dynamic and high
dynamic profiles. Although its Scoresccuracy in the long-term stability profile is not as high as in the
coulomb counting algorithm, its stability scores in this profile are still higher than those of the coulomb
counting algorithm, with Scoreo  fset, Accuracy = SCOT€Novise, Accuracy = 4.3 for the RLS algorithm.

In Fig 9, the SOC results in low dynamic profile under normal operation (without offset and noise errors)
and under operation with voltage offset are depicted. The SOC results in long-term stability profile under
normal operation as well as current offset are depicted in Fig 10.

The mean scores of the SOC algorithms are calculated from the tables like Table 1 and transformed into
radar plots as described in Subsection 3.6. The resulting radar plots for all three algorithms and profiles
are shown in Fig 11.

As one can see in Fig 11, the implemented coulomb counting method delivers the best overall perfor-
mance in comparison with the implemented DUKF and RLS methods, because it has the largest coverage
area in all three radar plots. However, it shows the poorest Scorep fset and Scorengise in both low dy-
namic as well as long-term stability profile. Although the DUKF algorithm is less accurate and has
larger drift in comparison to the coulomb counting method and exhibits slowest transient behaviour, it
performs relatively consistent in all three test profiles with sufficiently good stability against offset and
noise influences. On the other hand, the RLS algorithm obtains fairly similar mean scores as the DUKF
algorithm in most aspects. However, its drift scores fluctuate in difterent test profiles. In the radar plot
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Figure 9: Results in low dynamic profile at three temperature levels with no offsets and noise (top row) and 30 mV

voltage offset (bottom row)
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Figure 10: Results in long-term stability profile without offsets and noise (left) and 0.5% current offset (right)
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Figure 11: Radar plot of SOC benchmark scores for all three profiles
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of the high dynamic profile, it is observed that the RLS estimation has Scorep,;f; = 0 and relatively

low Scorep fser as well as Scorenoise. This is because the drift score of the RLS method fails for high

dynamic profile because its estimation error at to 55 (€g 51 ) is beyond the highest error bound (10%). This
leads to no further investic%ation of offset stability and noise stability of the algorithm regarding drift. The
Scoreof tset 1s calculated from the mean of both Scoreo  fset, Accuracy and Scoreo g fset, prift» Whereas

the Scorenoise is calculated from the mean of Scorenoise, Accuracy and Scorenoise, prift- Hence, with

the absence of Scoreof fset,prift and Scorenoise, Drift> the Scorepfser and Scorey,ise of the RLS
algorithm are significantly lower than those of the other two methods.

5 Conclusion and outlook

In this work, a methodology and a toolchain to test and compare BMS diagnostic algorithms are presented
and elaborately described. The toolchain takes into account the complete signal path through the BMS
hardware from the application to the BMS algorithms. It can be adapted to the specific needs of the user,
like a certain application, battery or BMS system. The functionality of the toolchain has been validated
with a large set of simulations including different input profiles, temperature levels, sensor offsets and
exemplary results have been discussed for a RLS based SOC estimation algorithm. The proposed method
makes it possible to compare different algorithms for the same task, select the most suitable algorithms
for a given application and to evaluate their interaction under realistic conditions.

In future work, the toolchain will be used to validate and compare the performance of different diagnostic
algorithms for each battery management task and for different applications. Also, the performance of
various algorithms on different cell chemistries, i.e. lithium iron phospate (LFP) will be investigated. In
addition, the toolchain will be improved to sufficiently compare not only the precision and robustness of
the algorithms, but also the necessary computing power.
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