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Summary

The development of State-of-Charge (SoC) algorithms for Li-ion batteries involves carrying out different
laboratory tests with the money and time that this entails. Furthermore, such laboratory labours must typically be
repeated for each new Li-ion cell reference. In order to minimise this issue, this work proposes a new approach
for developing SoC algorithms, using an Artificial Neural Network in combination with a Transfer Learning
method. The latter technique will make possible to take advantage of the data generated for previously tested cell
references and use it for the development of a SoC estimation algorithm for a new cell reference. This work
provides a proof-of-concept for the proposed approach, using synthetic data generated from electrochemical

models, which describes the behaviour of different Li-ion cell references.
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1 Introduction

In order to ensure a safe and optimal use of Li-ion batteries, it is necessary to estimate their State-of-Charge (SoC)
accurately [1]. The development of SoC estimation algorithms requires performing several tests on Li-ion cells
at different operating conditions (temperature, current or State-of-Health, SoH), typically in laboratory
environment, which is time and cost intensive. An important issue in this field of research is that a SoC estimation
model developed for one particular cell reference is not necessarily adequate for a different cell reference
(different manufacturer, size, chemistry, etc.). This implies that every time a SoC estimation algorithm has to be
developed for new cells, all the laboratory testing labours have to be started from scratch, inducing an important
and periodical waste of time and economical resources [2].

The main objective of this research is to propose a new approach for developing SoC estimation algorithms,
taking advantage of the data and prior knowledge generated from previously tested or deployed cell references.
In this work, this is tackled using Artificial Neural Networks (ANN) algorithms in combination with Transfer
Learning (TL) methods. Such methods consist of: i) first, training the ANN with data obtained from a previously
tested and/or deployed cell reference, and ii) then retrain the ANN using a reduced amount of data from the new
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cell reference, deriving the corresponding SoC estimation algorithm. In this way, the obtained SoC estimation
algorithms are expected to provide accurate estimations, while reducing the laboratory labours and/or the field
data gathering period required for the new cell references [3]-[5]. This process is depicted in Figure 1.
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Figure 1. Conceptual flowchart summarising the SOC estimation algorithm development method, based on TL.

In this work, a proof-of-concept of this new SoC estimation algorithm approach is provided, using for that two
different datasets which represent the cycling behaviour of two different cell references. The first dataset consists
on synthetic data generated from a widely accepted electrochemical model. The second dataset, used to apply the
TL method, was generated in laboratory environment by cycling real battery cells.

2 SoC estimation algorithm

The SoC estimation algorithms developed in this work are based on ANN. For this application, Convolutional
Neural Networks (CNN) in combination with Recurrent Neural Networks (RNN) are of especial interest, as CNN
are good for feature extraction between different inputs and RNN are particularly adequate for time-series data
[6], [7]. Moreover, CNNs are a type of neural network specialised in reducing the number of parameters in the
processing data due to their capacity to automatically detect the important features in the input data [8], this is of
particular interest as it will extract the most important features and look for relationships between the different
input parameters. Figure 2 illustrates an example of a ID CNN architecture for time series processing.
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Figure 2. CNN architecture [9]
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On the other hand, RNNs contain memory units in which they store the states estimated in the previous timesteps
and take them into account to improve future estimations, as illustrated in Figure 3 [10], this type of neural
network is of especial interest for the application as it will extract the temporal relationships of the timeseries
that make up both the input and output data. More specifically, in this work, Long Short-Term Memory (LSTM)
neurons will be used, as their memory capabilities are the solidest ones between different recurrent neurons [11].
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Figure 3. LSTM architecture [9]

To develop the cell SoC estimation algorithm, four different input variables were considered, namely the cell
voltage, current, temperature and previous battery SoC estimation. The output of the algorithm was the SoC of
the cell. In Figure 4, a scheme of the proposed algorithm is depicted.
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Figure 4. Proposed algorithm scheme.

As previously mentioned, a TL method was applied to develop a SoC estimation algorithm able to take advantage
of the data and prior knowledge generated from previously tested or deployed cell references [12]. In fact, TL is
a successful method which allows to apply in a new task the knowledge and skills acquired in previous tasks [13].
To do this, the neural network is first trained with one database. Afterwards, this neural network is retrained (that
is, the internal weights of the neural network are recalculated) with a second database. In this work, the TL was
carried out by completely retraining the neural network, without blocking any of the layers, in other words,
retraining all the weights that compose the different layers of the algorithm.

3 Datasets

Two different datasets were used in this work, each one corresponding to a specific cell reference. Both datasets
include different variables for each input data sample (temperature, voltage, current and previous SoC estimate)
to allow the ANN to quantify their impact on the underlying SoC of the cell.

The first dataset was generated using a widely accepted electrochemical model to simulate the behaviour of an
LCO-based cell, known as the Doyle cell [14]. A specific cycling profile was designed, which consists of different
types of charging and discharging phases (constant current, constant voltage, or different charging/discharging
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levels), intercalated with pauses of different durations. This cycling profile was especially designed in order to
facilitate the evaluation of the performances of the developed SOC estimation algorithm, in such a way that the
weaknesses of the algorithm could be easily identified. The cycling profile was applied at several temperature
values from 0 °C up to 45 °C. For each one of these temperatures, charge and discharge cycles were simulated at
different C-rates, ranging from 0.5C to 4C in discharge and 0.5C to 1C in charge, as 1C is the maximum charging
current. Table 1 summarises the cycling conditions and the cycling profile is represented in Figure 5.

Table 1: Cycling conditions involved in the dataset generated using the electrochemical model of

the Doyle cell.
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Figure 5. Designed profile: C-rate, SoC and Voltage vs. Time @ 25 °C and 1C CHA/DCH

The second dataset was generated in laboratory environment, carrying out different cycling tests on commercial
NMC-based 58 Ah cells. These tests included capacity, Hybrid Pulse Power Characterization (HPPC) and quasi-
OCV tests. The capacity test consisted on three charge/discharge cycles at 1C. The HPPC was carried out using
current pulses at different currents, varying from 0.5C to 3C at different SoC levels. The quasi-OCV test was
done discharging and charging the cell at 0.05C.

In addition, the cells were tested using the above-mentioned designed profile to which WLTC profiles were
applied at different SoCs, at the end of the profile. Three different cells were tested in each condition to ensure

the repeatability of the results.
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4 Results and Discussion

As previously mentioned, in this work a baseline ANN model was developed using the data obtained synthetically
using the electrochemical model of the Doyle cell (hereinafter called “baseline model”), and then the TL method
was used to retrain such model with the data generated in the laboratory using real commercial cells.

In addition, for comparative purposes and in order to evaluate the benefits of applying the TL method, a new
ANN model with identical configuration was trained using only NMC cells data (hereinafter called “NMC
model”). This section depicts the results obtained with each of the models.

4.1 Baseline model

As mentioned in Section 2, CNN and LSTM architectures will be combined to develop the SoC estimation
algorithm. More specifically, a CNN layer using 16 filters and a bidirectional LSTM layer with 5 neurons will
be used.

To train, validate and test this model, the data corresponding to the Doyle cell, previously introduced in section
3, was used. This data was divided as shown Table 2.

Table 2. Baseline model train/validation/test configuration.
Dataset Conditions

0°C-0.5C CHA - 0.5C DCH

10°C - 0.5C CHA - 0.5C DCH

10°C - 1C CHA - 4C DCH
Training data 25°C-0.5C CHA - 0.5C DCH

25°C-1CCHA-1C DCH

25°C-1C CHA-4C DCH

45 °C - 1C CHA - 4C DCH

ey L. 0°C-1C CHA-2C DCH
Validation data 10 °C - 1C CHA - 1C DCH
0°C-1CCHA-1CDCH
10°C - 1C CHA - 2C DCH
25°C -1C CHA - 2C DCH
45°C - 1C CHA - 2C DCH

Test data

The algorithm was trained using the “training data” for 500 epochs, in order to determine the optimal weights of
the developed ANN model. The model with the minimum Mean Absolute Error (MAE) in the validation data
during training phase was saved. The algorithm was then evaluated using the “test data” to verify the accuracy
of the algorithm on never observed data. Table 3 shows the MAE as well as the maximum error achieved for the
training, validation and test datasets.
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Table 3. MAE and maximum errors achieved with the baseline model, for the training,
validation and test datasets (Doyle dataset).

Dataset Mean Absolut Error (MAE) Maximum Error
Training data 0.113% 1.435%
Validation data 0.097% 1.512%
Test data 0.077% 1.459%

Figure 6 depicts the SOC estimation obtained at 25 °C, 1C charge and 2C discharge. In this case the MAE is
0.225% and the maximum error is 1.418%. It could be observed that the SOC estimation algorithm follows the
real SoC curve with high accuracy.
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Figure 6. Estimation of the baseline model for de designed profile at 25 °C, 1C CHA and 2C DCH.

4.2 NMC model

The NMC model was developed for comparative purposes, in order to evaluate later on the benefits of using TL
method. Therefore, the ANN model used to train this model was identical to the baseline, i.e. composed of a CNN
layer with 16 filters and a bidirectional LSTM layer with 5 neurons.

4.2.1 NMC model #1: model trained with reduced training data

To train the ANN, the data from the capacity test, qOCV and HPPC of one of the cells tested at 25 °C was used.
To validate this model, data corresponding to three other cells was used, which involved the same profiles at 10
°C, 25 °C and 45 °C. Finally, to test the SoC estimation algorithm, the data from the additional cells was used. In
addition, the designed profile explained in section 3 was also included in the test phase.
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Table 4. Training, validation and test data split for the NMC model #1.

Dataset Conditions Tests
Training data CELLL1: 25°C
CELL2: 10°C
Validation data CELL3: 25 °C Capacity
CELL4: 45 °C Quasi-OCV
HPPC
CELLS: 10°C
CELLG6: 10 °C
CELL7: 25 °C
eyt CELLS: 45 °C
CELL9: 45 °C
CELL10: 25 °C Designed profile

Table 5 indicates the MAE and the maximum error achieved for the training, validation and test datasets.

Figure 7 depicts the SOC estimation of the algorithm on the designed profile. The MAE of the algorithm in this
profile is 2.48% with a maximum error of 12.294%.
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Figure 7. Estimation of the SoC made by the model trained with reduced training data for the designed profile at 25 °C and
1C CHA/DCH.

4.2.2 NMC model #2: model trained with increased training data

In order to obtain more accurate results and complementary information for later comparison, a new training was
carried out including more data in the training dataset. In this case, data from CELL5 and CELLS (Table 4) was
added to the algorithm training. Therefore, the validation dataset remain constant and test dataset was reduced as
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CELLS and CELLS8 were used to train. In the the MAE and the maximum error achieved during the training,
validation and testing is depicted.

It is noteworthy that the MAE decreased by more than 1% compared to the results achieved in Section 4.2.1, and
that the maximum error was also reduced. Figure 8 shows the designed profile, and it could be observed that the
estimations followed more accurately the real SOC value. The MAE of the algorithm in this profile was 0.941%
and the maximum error was 2.895%.

SoC estimator

m?M 11 (| i

@
=

SoC [%]

&

5]
=

— Real Data
L L =~ Estimation

(=]

| T T T T I SN TN TN SO N N TR SR SO N N1
4 | —

Time [h]

Figure 8. Estimation of the SoC made by the model trained with increased training data for the designed profile at 25 °C
and 1C CHA/DCH.

4.3 TL model

The last step in the development of the SoC algorithm was to apply the TL to the model trained with the synthetic
Doyle cell data in section 4.1.

The training data defined in section 4.2.1 (reduced amount of training data, with just one single cell data employed
for training) was used here to retrain the algorithm (Table 4). For the validation dataset, the data from three other
cells cycled at 10 °C, 25 °C and 45 °C was used. Data from the remaining cells, as well as the data corresponding
to the designed profile, was included in the test dataset.

Table 5 shows the errors obtained after applying the TL method. It could be observed that the error is reduced by
more than 1.2% compared to the model trained with reduced training data (NMC model #1) achieved in section
4.2.1 and 0.25% compared to the model trained with increased training data (NMC model #2) achieve in section
4.2.2.
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Table 5. MAE and maximum errors achieved with the different models, for the training, validation
and test datasets (NMC experimental dataset).

Mean
Model Dataset Absolut = Maximum
Error Error
(MAE)
Model trained with Train 1.497%  16.787%
reduced training data Validation 2.653% | 17.458%
(NMC model #1) Test 3.168%  18.369%
Model trained with Train 0.487%  2.083%
increased training data Validation 0.486%  2.102%
(NMC model #2) Test 0.494%  2.504%
Train 0.251% 4.045%
TL model Validation 0.243% 4.086%
Test 0.243% 3.411%

Figure 9 depicts the SOC estimation obtained for the designed profile, using the model updated by TL. The SOC
estimation significantly improved compared to the results depicted in Figure 7. For this profile, the MAE is 0.450%
and the maximum error is 1.408%.
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Figure 9. Estimation of the SoC made by the TL model for the designed profile at 25 °C and 1C CHA/DCH.

5 Conclusions and Future works

This work introduced a proof-of-concept of a new approach for the development of SOC estimation algorithm,
based on the TL method. The main objective of such approach was to reduce the need for exhaustive laboratory
testing, typically required for SOC algorithm development each time a new cell reference is desired to be
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deployed. This was possible by leveraging the data previously available for different cell references, already
tested or deployed, which could encode useful information usable for the new cell reference.

In this work, a SoC estimation algorithm was developed using a neural network composed of a CNN layer and a
LSTM layer. This network was trained with four different training datasets, leading to four different models: i)
the “baseline model” was trained only with LCO-based synthetic data, generated using a previously validated
electrochemical model, ii) the “NMC model #1” was trained exclusively with a reduced number of NMC-based
data, generated in laboratory by cycling commercial cells, iii) the “NMC model #2” was trained exclusively with
NMC-based data (higher amount of training data), also generated in laboratory by cycling commercial cells, and
iv) the “TL model” was trained combining LCO-based synthetic data and a reduced number of NMC-based data.

Comparing the performances of these models, the benefits of the proposed TL-based approach were highlighted:
the number of data to be generated in laboratory and required to train the algorithm is significantly reduced, and
at the same time, the accuracy of the SOC estimations is improved considerably. This could be explained by the
fact that, during the first training phase based on LCO synthetic data, the neural network was able to learn about
the cell behaviour at different conditions of C-rates or temperatures. Part of this knowledge was also relevant for
NMC cell’s SOC estimation, and was then exploited by the TL during the retraining phase, making possible to
reduce the amount of NMC cell data required from laboratory testing. Compared to an analogue algorithm
developed from scratch for NMC cells (NMC model #2), the error was reduced 50% and the training dataset
required from laboratory was reduced 40%.

Results obtained lead the way towards ultra-fast SOC algorithm development, as baseline synthetic data
generated by means of well-established electrochemical models serves to minimise the required experimental
tests for any given new cell reference to which the algorithm needs to be tailored. However, it should be noted
that, so far, the developed model does not take into account the degradation of the cell. This model can be
extended, and an algorithm capable of estimating the SoC of the battery can be developed by including the actual
SoH of the battery as an input variable.

Finally, the two cells used in this work have similar behaviour, so it would be interesting to analyse how the TL
behaves when data from a different chemistry is applied during retraining, such as data from LFP-based cells.
Further research will be carried out to identify the limitations of the proposed TL-based approach.
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