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Summary

The correct monitorisation and control of battery operating conditions such as temperature, charging profile and
State of Charge operating ranges are essential to ensure safe operation and maximise battery lifetime. However,
battery behaviour monitoring and modelling remains a significant technical challenge due to non-linearities and
coupled phenomena governing their performance. The pursuit of new, increasingly intelligent and
computationally heavy state estimation algorithms requires a significant amount of data and computational
power, which at some point can be challenging to deploy in current BMS solutions, specially if hard real-time
requirements are to be met on specific safety functions. To solve this problem, this paper proposes a cloud-based
digital twin platform to expand computational power and data storage capacity of any given BMS solution. This
work provides the description and validation of the models to be integrated into the target simulation platform

and a module-level modelling approach.
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1 Introduction

Maximising Li-ion battery (LIB) lifetime is a technical challenge due to the strong coupling between battery
longevity and battery operating conditions such as temperature, charging profile or State of Charge (SOC)
operating range [1]. Therefore, appropriate battery monitoring under a wide variety of operating conditions is
essential to maximise the usability and lifetime of the batteries.
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Although some research efforts are currently trying to introduce embedded sensors on Li-ion batteries [2], on
this date, the internal states of a LIB are not directly measurable in situ by conventional sensors. Therefore
estimations are required to quantify these X states, and the most promising are model based ones. SoC and State
of Health (SoH) are some of the typical key X states (SoX) that are tracked in the Battery Management System
(BMS). The monitoring of SoX allows a correct and safe operation of the battery. In addition, they provide
essential information about the energy and power available. This enables advanced control strategies, advanced
fault or safety condition diagnosis, thermal management or optimal control of battery performance. Accurate and
robust estimation algorithms are often based on historical data, requiring greater computational power and
memory that conventional industrial BMS solutions lack [3]. To overcome these challenges, the required
performance of the BMS can be complemented by means of cloud computing and loT-based technology.

With batteries becoming increasingly connected thanks to the use of Internet of Things (IoT) technologies, there
is the possibility of collecting real operation data once the batteries are deployed. In this context, Digital Twins
(DT) [4] are created as digital replicas of the battery with close interaction with its virtual counterpart and the
aggregation of in-field data over their entire lifetime.

Creating a battery DT environment in which the models, data and Machine Learning (ML) tools are integrated,
makes possible to have a cloud BMS (cBMS) that can complement the in-field counterpart. This enables the
application of key communication and networking technologies such as virtualisation, real-time monitoring and
paves the way towards improved asset management and subsequently extend the battery lifetime.

With the final purpose of developing a battery DT, this work begins introducing the selected cell and the electric
and thermal models developed for the design of the cloud-based simulation platform (Section 2). Continuing
with the preliminary validation results of both models (Section 3). The hardware required for the validation of
the developed models is then presented, along with the initial approach for the extrapolation of the models to the
module level and the implementation plan of the target DTFP in the cloud (Section 4) and finally the main
conclusions and future work are highlighted.

2 Developed Digital Twin Simulation Platform

In this section, the selected cell is presented together with the electrical and thermal models developed in this
work. In addition, the development that followed for the proper integration of both models for the final DTSP is
explained.

2.1 Selected Cell Reference

In this study, Lithium Werks 26650 cells (Figure 1) were used. Their main characteristics are summarised in
Table 1.

Table 1: Lithium Werks 26650 cell characteristics.

Nominal Ratings

Voltage 33V

Capacity 2.5 Ah
Internal resistance 6 mQ
Temperature range -30-55°C

Figure 1: Lithium Werks 26650 cell.
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Concerning issues of performance and lifetime prediction of LIBs, models of different nature are often used [5],
[6]. These typically describe the voltage response to a current load, the thermal performance and the evolution
of capacity/resistance over the lifetime of the cells. There are currently a diversity of approaches in each type of
models, and in the way they are integrated.

The DTSP consists of a set of models and estimators that describe the instantaneous state of the battery. Below,
the developed electrical and thermal model will be described. In order to parameterise these models, the cell had
to be tested under different operating conditions.

2.2 Electric Model

Batteries are often modelled to describe the voltage response of the cells according to the different physical
phenomena [1]. Equivalent circuit models (ECMs) are one of the most common methods for electrical modelling
of batteries. ECMs use electrical elements such as resistors and capacitors, as well as an open circuit voltage
(OCV) versus SoC profiles to reproduce the voltage response of a battery. ECMs require detailed parameter
identification to represent the non-linear nature of the battery cells. They are lighter than electrochemical models
and, depending on the specific battery chemistry and targeted modelling accuracy, a different number of RC pairs
can be used. In this work, an ECM with two RC pairs was chosen, which also considered the hysteresis effect.
This exact definition of ECM has been chosen due to its trade-off between accuracy, complexity and
computational cost. Figure 2 describes the ECM to be implemented in the DTSP.

|| ||
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Figure 2: Digital Twin Electric Equivalent Circuit Model

The different parameters of the model are influenced by the temperature and SoC of the LIB. These parameters
are obtained by different laboratory tests such as the Hybrid Pulse Power Test (HPPT) or the OCV vs SoC test.
Those are then introduced in a look-up table and the model updates the value of the parameters at each time step.
The states of diffusion voltage, the hysteresis voltage and the internal resistance of the cell are calculated
following the same procedure as presented in [7].

The instantaneous hysteresis component changes with the sign of the input current. This hysteresis voltage is
modelled by s(k):

_ (sgn(i(k)),  li(k)| >0 (1)
st = { s(tk—1), otherwise

M is the value of the maximum positive and negative value of hysteresis at any SoC. On the other hand, M, is
the instantaneous hysteresis. Therefore, full hysteresis voltage will be defined as (Mys(k) + Mh(k)). The output

equation of the model considers all the phenomena described above. The equation is defined in (4).

v(k) = OCV (k) + Mys(k) + Mh(k) — Ryig, (k) — Ryig, (k) — Roi(k) 2)
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In the batteries, states are estimated indirectly from measurement data by the BMS. The BMS must be able to
choose the model parameters at each time step such as cell capacities or resistances and the different cell states
such as state of charge or diffusion voltages. Estimation of SoC is complex because it is time-dependent, highly
non-linear depending on battery chemistry and variable with temperature. Traditional methods for estimating
SoC include the voltage-based method (open-circuit voltage (OCV)) [8] and the current-based method (coulomb
counting) [9] . These types of methods for SoC estimation are simpler to implement, however, they have their
limitations. The OCV method ignores the effects of impedance, diffusion and hysteresis voltage. On the other
hand, the Coulomb Counting method is an open-loop type of estimation with a cumulative error.

Therefore, more advanced methods are preferred to this type of estimation techniques, such as Kalman filters,
for example. In this work, a Sigma Point Kalman Filter (SPKF) has been added to the ECM model. This algorithm
estimates the SoC value based on the measured voltage, current and previously estimated SoC (by means of the
ECM). It is based on the sequential probabilistic inference, and results in a six steps algorithm, that can be
grouped into prediction and correction phases (each one composed of three of the six steps). This algorithm
produce a state estimate together with their confidence boundaries for each measurement interval. More detailed
information can be found in [10], [11].

2.3 Thermal Model

Thermal models are used to describe the thermal gradient of LIBs. They can be used to estimate the temperature
at different points in the cell without additional temperature sensors that increase the cost of the energy storage
system. The chosen and developed thermal lumped model is shown in Figure 3.
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Figure 3: Digital Twin Thermal Lumped Model.

In a first step, this model calculates the heat generated by each cell (Qgen) and the accumulated heat (Qaccu).
In addition, the heat transferred to the cell surface by conduction (ch,i) is calculated in all three dimensions.
This heat transferred to each cell surface is dissipated by convection (ch,i) and radiation (Q'rd,i) . This
convection evacuated heat power is calculated using the resistance corresponding to each of the cell dimensions
(radial and axial in this case). The thermodynamic energy balance of lithium-ion batteries was discussed in detail
by Bernardi et al. [12]. However, not all processes were considered in this work, only heat generation, heat storage
capacity, heat transfer and finally heat dissipation.

In Figure 3, the capacity C,, symbolises the thermal inertia of the cell. The different thermal resistances represent
the thermal diffusion in different directions from the cell core to the different surfaces and along them. In the
scenario of this work, convection occurs naturally (no cooling system is used), so it is necessary to consider the
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diffusion heat by radiation. To calculate this energy balance, the basic thermodynamic equations described in [14]
are used.

The generation of heat (Q gen) 18 given by the result of the transfer of charges creating irreversible thermal energy
loses, as well as by the reversible electro-chemical reactions in the cell. A simplified form of the equation
proposed by Bernardi et al. can be used as an expression of the heat source in the lithium-ion cell adopted in this
work, as shown in the following equation:

dUan
= 1% "Ry +1-TEHC 3)

Qgen = 1V —U™9) +IT

where, [ is the current through the cell in Amperes; V is the terminal voltage of the cell in Volts; U9 is the
average OCV inVolts; T is the temperature of the cell in degrees Celsius (°C) and (dU%"9 /dT) is the Entropic
Heat Coefficient (EHC) in (Volts/°C) defined by the variation of the equilibrium potential with temperature.

Irreversible heat is defined as the heat which behaves as an exothermic process regardless of whether the cell is
charging or discharging. On the other hand, the reversible heat is the responsible of the exothermic or endothermic
performance of the cell. The EHC defines the amount of heat generated or absorbed for each SoC point in the
charging or discharging processes. With positive EHC values, a cell will generate heat during charging (positive
current value) while it will absorb heat during discharging (negative current value) [13]. The opposite happens
with negative EHC values. EHC changes are subject to each specific cell and must be studied for each case.

The equations describing each of the thermal phenomena, describing the overall thermal balance, are described
as:

Qaccu = Qgen - Qcond 4)
Qcond,i = Qconv,i + Qrad,i Q)

where, Q,cey is the heat accumulated between the current k and the previous k (k — 1), Qgen is the heat
generated by the current flowing through the cell, Qcond_i is the heat transferred by conduction from the centre
to the surfaces of the cell and Q'wm,,i and Q'md,i is this conductive heat dissipation via convection and radiation.
The index i represents each of the three dimensions through which the heat is transferred.

2.4  Integration of Cell Models

The models previously presented are integrated to develop a DTSP based on cloud computing. This platform is
designed to be the digital replica of the LIB, where different battery states can be estimated (SoX) to later enable
a variety of Digital Services and, thereby, optimise battery operation through its entire lifecycle. After analysing
the inputs, outputs and parameters required by each of these models, it was studied which characteristics are
shared and how the basic properties of each model influence the other. As shown in Figure 4, both models require
a current profile as input data and also need the temperature and the SoC from the previous step. In terms of
parameters, they share a common internal resistance parameter of the cell.

In Figure 4, a simulation platform for this cell is proposed for a complete electrical and thermal monitoring. Both
models are updated to obtain more accurate and reliable estimates and predictions. The parameters of each model
must be chosen at all times based on the SoC and the actual temperature of the cells. This may lead, for example,
to a miscalculation of the SoC estimation that could lead to a false cell heat generation and consequently, a wrong
cell temperature estimation. In addition, the thermal and electrical dynamics of the cells are not equal (the electric
dynamics are faster than the thermal ones) so the execution times of each of the models must be also optimised.

35" International Electric Vehicle Symposium and Exhibition 5



Electric Model

Analytical Lumped Model : Equivalent Circuit Model i
. . i
|
(L :
To 1 Estimated Temperature
Sigma Paint Kalman Filter o Estimated Voltage
- | s
; \ J (SPKF) .
] — e e Estimated State
] ' ! |:| of Charge
Measured Voltage
777777777777777777777777777777777777777777777777777777777777777777777777777 |:| ‘E] Measured Temperature

Figure 4: Digital Twin Simulation Platform.

3 Preliminary Validation Results

The DTSP validation will be done both at the cell level and battery module level. However, this paper mainly
focuses on the former validation stage. For that purpose, different electric and thermal characterisation tests at
Beginning of Life (BoL) were carried out.

For the electrical model validation, a HPPC test was performed in which different C-rate pulses were applied to
the cells at different points of the SoC, both in charge and discharge. On the other hand, the thermal model
validation was performed against a cell capacity test where the measured temperatures are compared with the
thermal model estimation.

3.1 Electric Model Validation Results

To examine and compare the performance of the proposed algorithms, a discrete-time state-space model applied
to the battery cells was first defined. Tests were performed in the laboratory to adjust the parameters of the cell
model, and then tests were performed on another cell to see how these models fit the cell performance. For the
tests, a climatic chamber was used for the experiments requiring a constant temperature and a programmable
Industrial Battery Tester (IBT).

The cell test carried out were a sequence of 4 charge and discharge pulses (of 2.5 A and 1.25 A) spread over the
SOC range of 90-10%, all at ambient temperature of 25°C. Figure 5(a) represents the SoC as a function of time
while charging and discharging, the measured voltages and voltage estimation in Figure 5(b) and finally in Figure
5(c) the absolute error of the model in mV.

The actual voltage value (blue line) was compared with the predicted voltage value (orange line) for the tested
data. The model fit has been evaluated by comparing the estimation error (equal to the cell voltage minus the
model predicted voltage) and a very close agreement is observed, especially during the dynamic part of the test.
The mean absolute error of the model prediction is 0.0228 mV and the maximum error of 0.7291 mV, only taking
place at very low SoC levels in which the performance of the voltage response of the cell significantly varies
from its behaviour at greater SoC values.

In the specific case of this cell, the cell's voltage or response is very significant at both edges (0% and 100%
SoC). There are two main reasons for these: i) the size of the cell and ii) the distinctive OCV curve of the cell.
Due to this variation, a small error in the SoC estimation is produced at low SoCs, e.g. the model arrives to 1%
SoC instead of 0%. These errors have led to a deviation in the estimates in the charging part of the test. Especially
at the high SoC part, where the model predicts that the cell reaches its 100% SoC earlier than it should.
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Internal Resistance cell pulse at 25°C
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Figure 5: Results of ECM at 25 °C.

On the other hand, the test has been repeated with an identical current profile at an ambient temperature of 45°C.

Figure 6 shows the results obtained by the electrical model under the new conditions.

Internal Resistance cell pulse at 45°C
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Figure 6: Results of ECM at 45 °C.
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The model has mostly predicted the correct voltage value with a mean absolute error of 0.0275 mV and the
maximum error of 0.8574 mV. These results prove the validity of the electrical model, which is well suited to
subsequent simulation needs at battery module level. Further validation results will be reported in upcoming
publications.

3.2 Thermal Model Validation Results

In this part, the identified thermal behaviour of the selected cell was further analysed by means of loads at
different C-rates. In this way, the expected performance and the thermal response measured during the testing of
the cell could be verified. 1C load of two complete cycles of the cell was performed in a thermal chamber at a
constant ambient temperature. The thermal chamber used has an accuracy of +0.3 °C to maintain the desired
ambient temperature. The temperature mapping of the cell temperature was performed using T-type
thermocouples for each cell surface with an accuracy of +1.5 °C and the IBT was used to load the cells. The same
test was then repeated, in this case at 4C.

The thermal model calculates an energy balance at each time step to estimate and optimise the temperatures of
every surface of the cell. The energy balance is performed using the Newton Raphson optimisation method.
Figure 7(a) represents the SoC as a function of the cell, the measured temperatures and the temperature estimation
by the model in Figure 7(b) and finally in Figure 7(c) the absolute error of the model in °C of the two tests.
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Figure 7: Results of Lumped Model for 1C current profile.

The model has an average error of 0.3609 °C and the maximum error of 1.7093 °C. This same test has been
repeated in this case at 4C currents of the cell. The model was not parametrised for such high currents, however
it showed an acceptable accuracy with an average error of 2.3405 °C and the maximum error of 3.8244 °C. Thus,
it was concluded that the model is able to predict the temperature at different operating C-rates with a sufficient
accuracy.

4 Implementation of the DTSP in the Cloud

To develop module-level battery models which consider each of the cells separately, this section will describe in
detail the proposed module-level modelling approach. Most of the electrical and thermal battery modelling works
in the literature are designed and validated at the cell level. However, the actual performance of a DTSP depends
on its ability to model LIB performance at the module level. To implement this methodology, the proposed
hardware is presented in Figure 8.
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Figure 8: Schematic diagram of the proposed DTSP validation platform.

A battery module is composed of a series of cells connected in series or parallel. However, all these cells rarely
operate in perfect balance when it is operating, and this affects the final useful energy of the battery. Therefore,
it is necessary to estimate the SoX of each cell and then estimate the equivalent response of all the cells. To this
end, this work is ongoing on the extrapolation from cell-level models to full module-level models.

In this line, it is proposed to develop the thermal model presented in this work and extrapolate it to make its
estimations at the module level. By implementing at the module level, the heat transferred between all the cells
is considered. To estimate the temperature distribution within the module, the common points of the thermal
equivalent circuits of the cells are joined according to the module topology and a meshed circuit is created. This
implies that the operations to calculate the energy balance are multiplied by the number of cells. With this
information, the equivalent temperature of all surfaces and the core temperature of each cell are obtained. These
are used to decide the equivalent temperature of each cell. The thermal model at module level uses the updated
voltage and SoC information (information estimated by the electrical model). In turn, temperature is known to
influence the electrical behaviour of the cell, so the temperatures estimated and updated by the thermal model
will be used as input for the electrical models at the cell level. The electrical model is implemented for each cell
and co-simulated. The results are extrapolated to the module level considering some previously defined criteria
for the estimation of the Equivalent Module Voltage (EMV') and this successively to estimate the equivalent SoC
of the whole module.

The DTSP will provide a clearer representation of the temperature distribution over a large number of points
within the module, which is usually not affordable as LIB modules typically have a small number of temperature
sensors. In addition, this platform allows for a more accurate estimation of the SoC of each cell in the module.
This, together with the temperature distribution, can lead to more accurate SoH and RUL estimates. Moreover,
the simulation of the whole module performance can contribute to identify unexpected behaviours on the real
battery system — e.g. an excessive temperature measurements compared to the simulation results (at certain
operating conditions) — thus potentially contributing to prevent hazardous safety events. However, running the
thermal model at the module level (the calculation of the energy balance multiplied by the number of cells)
together with electrical co-simulations at the cell level requires considerable computing power that the battery
BMS may not be able to provide.

To overcome these challenges, the required performance of the BMS can be extended by means of cloud
computing technologies. With this computational capacity, continuous monitoring with different state estimation
algorithms is possible.

Thus, Cloud Computing technology will be used for the implementation of the designed DT which is expected
to reach close to real-time operation performance. To develop the Cloud, it was decided to use the Amazon Web
Services as cloud infrastructure provider. The developed architecture is presented in Figure 9.
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Figure 9: Schematic architecture of the DTSP Cloud's acquisition of new measurements.

The data obtained by the BMS will be sent by means of a simple gateway to the Cloud. Message Queuing
Telemetry Transport (MQTT) communication protocol and the AWS IoT service will be used to make this
connection. Each time AWS IoT receives a new input, it will trigger a Lambda function automatically. This data
will then be stored in a relational database and finally the DT algorithms will be executed allowing the monitoring
of the LIBs in real time as shown in Figure 10.
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Figure 10: DTSP Cloud schematic architecture
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As previously mentioned, the models need data from previous estimates, so the Lambda function will call the
database and update with the new estimates performed. All SoX estimates will be stored in historical data and
will allow the monitoring of LIBs in real time. Finally, a visualisation service (Amazon QuickSight) and other
monitoring services will be used. Additional services such as predictive maintenance or a series of alarms and
warnings for both the manufacturer and the end-user are under consideration.

5 Conclusions

This paper describes the initial stage of the development of a DTSP for LIB, mainly meant to extend computation
and computation power capabilities of current BMS solutions.

Cell-level electric and thermal battery models were developed. Both electric and thermal LIB models were
validated under experimental data obtained in laboratory tests in a DTSP framework at the cell level. Results
obtained highlight the tight coupling among models and provide a baseline modelling framework for subsequent
development stages, comprising a thorough module-level modelling approach.

Additionally, the DTSP validation platform currently being developed was presented, besides the constructed
cloud architecture where the developed cell-level (and subsequently module-level) models will be deployed. The
DTSP framework here described takes advantage of extended cloud computation capabilities to extrapolate
individual battery models to a battery module level, ultimately allowing extended monitoring capabilities.

Results presented in this paper will be further developed and reported on upcoming publications in which the
advantages of module-level approaches will be contrasted to simpler cell-level approaches most widely used to
this date.
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