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Abstract

The transport sector has to be largely decarbonized by 2050 to reach targets of the Paris Agreement.
This can be performed with different drive trains and energy carriers. This paper explores four pathways
to a carbon-free transport sector in Germany in 2050 with foci on electricity, hydrogen, synthetic
methane or synthetic liquid fuels. We use a transport demand model for future vehicle use and a
simulation model for the determination of alternative fuel vehicle market shares.

We find a large share of electric vehicles in all scenarios, even in the scenarios with focus on other fuels.
In all scenarios, the final energy consumption decreases significantly, most strongly when the focus is
on electricity. and almost one third lower in primary energy demand compared to the other scenarios. A
further decrease of energy demand is possible with an even faster adoption of electric vehicles, yet fuel

cost has to be even higher or electricity prices lower then.

1 Motivation

The transport sector has to largely decrease its greenhouse gas emissions to contribute to the goals set
in the Paris Agreement in 2015. For this reason, a number of countries have set goals to ban fossil-fueled
cars from the road within the next two decades [1]. Since passenger cars contribute most to transport
emissions in industrialized countries, this is certainly the most important transport sector to address, yet
heavy-duty vehicles, ships and aviation also need attention to completely decarbonize the transport
sector.

In this paper, we propose four scenarios that reach a decarbonized transport sector in 2050 in Germany.
These four scenarios differ in the use of energy in the modes of transport: one scenario focuses on
electrification, the second on a large use of hydrogen, the third on liquid synthetic fuels (Power-to-
Liquid, PtL) and the last one on methane produced from electricity (Power-to-gas, PtG). These energy
carriers are used whenever economically sensible in the scenarios. Such an analysis has been performed
in other studies as well [2,3], yet here, we put special emphasis on one energy carrier per scenario to
understand the demand for it. This paper is based on results from [4].

In the following section 2, we briefly describe the methods and data used. In section 3, the results are
shown and a discussion and conclusion is given in section 4.
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2 Methods and data

For this analysis, we use two models that have been the basis for several publications [5-7]. The model
ASTRA is used to determine the future development of transport demand in the different transport
sectors. The model ALADIN is used to decide on the drive trains that will be used in the future (see
Figure 1 for model description and interaction).

The ASTRA model (ASsessment of TR Ansport Strategies) has been developed over more than 20 years
in order to assess the impacts of transport policies on the transport system as well as on environmental
indicators like GHG emissions [5]. Therefore, it assesses the future development of the national
economy as well as its sectoral dynamics. On top, it includes a sophisticated population model that
allows to differentiate the population by attributes like age, income and employment status that enable
an allocation of people into groups with similar mobility patterns. Based on these systems, ASTRA
applies the classical 4 stage transport modelling approach (trip generation, trip distribution, modal split
and assignment) to simulate the transport generation, its distribution and the modal split both for
passenger and freight transport. Therefore, it uses data generated from large mobility surveys like the
Mobility in Germany or the German Mobility Panel [9].

As ASTRA is implemented in VENSIM software based on System Dynamics methodology, it calculates
the changes in the system every quarter year and allows considering feedback mechanisms like the
impact of road congestion on destination choice and modal split. Destination choice and modal split are
mainly driven by changes in transport costs and transport times such that changes in drivetrain in vehicle
fleets and thus increasing electrification of drivetrains induce changes in the transport related indicators
like passenger- or vehicle-kilometers.

The model ALADIN (Alternative Automobiles Diffusion and Infrastructure) is a bottom-up simulation
model that determines the market shares of drive trains based on individual driving profiles of vehicles.
Driving largely determines the individual cost for each mode of transport which is calculated with the
total cost of ownership and is accompanied by favoring and obstructing factors, e.g. for private passenger
car users. Based on these individual decisions the market shares of the different drivetrains are
determined for each year and transport mode.
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Figure 1: Models used and interaction for analysis

This very detailed analysis can only be performed where individual driving profiles are publicly
available, which is the case for passenger cars and heavy-duty vehicles in Germany. All developments
of market diffusion and energy demand for the other modes of transport (bus, train, inland and overseas
navigation, aviation) are added based on assumptions from literature. Although international navigation
and aviation are not part of the country-specific CO, budgets, these are important to get a full picture of
the transport sector. Table 1 shows an overview of modes of transport, their importance based on the
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final energy demand in 2019 (before the corona pandemic) and the way these transport modes are
analyzed.

Mode of transport Final energy demand in Modeling of future market diffusion
Germany in 2019 [PJ] [8]

Passenger cars 1,549  Individual buying decision based on TCO, favoring
and hampering factors and vehicle and
infrastructure availability

Heavy-duty vehicles 692 | Individual buying decision based on TCO and
vehicle and infrastructure availability

Trains 52

Buses 48

Tnland navigation 1 Literature based assumptions on future
development

Overseas navigation 57

Aviation 435

Table 1: Overview of transport modes, their final energy demand in Germany in 2019 and modeling approach

For passenger cars, we use about 7,000 individual vehicle driving profiles derived from the German
Mobility Panel [9] and the REM2030 vehicle driving data base [10]. These driving profiles contain all
trips of vehicles of at least one week, additional information on the driver socio-demographics and
vehicle. They were shown to be representative for German car sales [11]. For heavy-duty vehicles, the
annual mileages from 6,000 trucks are analyzed that stem from truckscout24 and KiD2010 [12,13] and
their representativeness has been shown in [7].

All detailed assumptions for vehicles, framework conditions, infrastructure, and energy carrier costs are
given in [4]. Here, we briefly show the differing energy, battery and fuel cell prices in the scenarios (see
Table 2 to Table 6).

Energy carrier cost 2020 2030 2040 2050

Power-to-hydrogen 0.285 0.220 0.150 0.120

Power-to-gas 0.300 0.195 0.160 0.122

Power-to-liquid 0.300 0.205 0.170 0.132

Table 2: Energy carrier cost for electricity-based fuels [€/kWh]. All costs include transport and infrastructure cost.
Scenario 2020 2030 2040 2050

Focus electricity 0% 10 % 20 % 50 %

Focus synfuels 0% 20 % 50 % 100 %

Focus methane 0% 20 % 50 % 100 %

Focus hydrogen 0% 10 % 20 % 50 %

Table 3: Assumed share of synthetic fuels in transport

Energy carrier price 2020 2030 2040 2050
Gasoline price 0.154 0.233 0.315 0.293
Diesel prices* 0.117 0.197 0.281 0.261
Hydrigen price? 0.285 0.285 0.282 0.235
CNG price® 0.088 0.190 0.273 0.257
LNG price® 0.097 0.212 0.317 0.304
Electricity price households*  0.329 0.321 0.313 0.311
Electricity price commercial*  0.226 0.217 0.210 0.208
Electricity price industrial* 0.130 0.131 0.136 0.135

Table 4: Energy carrier prices [€/kWh]. Lower in scenario focus synfuels, 2Lower in scenario focus hydrogen,
3Lower in scenario focus methane, *Lower in scenario focus electricity.

EVS35 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 3



The buying decision in ALADIN uses end user prices that contain all costs for generation, transport and
distribution, but also all taxes and other levies. Further, the energy prices in the transport sector do or
will in future contain a cost for CO; that has to be considered. Here, we use 200 €/t in 2030 and 500€/t
in 2050. We can observe the additional taxes and levies, e.g. in scenario focus synfuels with an energy
carrier cost of 0.122 €/kWh in 2050 (Table 2) and a final diesel price that is 100% synthetic in 2050
(Table 3) of 0.261 €/kWh (Table 4). Energy carrier prices are varied in the scenarios for a further
differentiation. In focus electricity, the household electricity price is continuously reduced up to
5 €ct/kWh in 2050 because of cost savings from load shifting. In focus synfuels, we reduce fuel prices
by about 2 €ct/kWh in 2050 for gasoline and diesel. This change is performed equally in focus methane
with CNG and LNG prices and the hydrogen price in focus hydrogen.

Battery and fuel cell prices are important drivers in the buying decision of alternative drive trains. We
consider common, yet optimistic prices for battery price development in focus electricity and a
stagnating one in the other scenarios (cf. Table 5). The same holds for fuel cell prices in scenario focus
hydrogen with an optimistic development and a higher price path in the other scenarios (see Table 6).

Scenario EV type 2020 2030 2040 2050
Focus electricity BEV 240 100 90 80
PHEV 264 110 98 88
Focus synfuels BEV 240 120 120 120
PHEV 264 132 132 132
Focus methane BEV 240 120 120 120
PHEV 264 132 132 132
Focus hydrogen BEV 240 100 100 100
PHEV 264 120 120 120

Table 5: Battery prices [€/kWh]. Own assumptions based on [14,15]

Scenario 2020 2030 2040 2050
Focus electricity 234 80 66 55
Focus synfuels 234 80 80 80
Focus methane 234 80 80 80
Focus hydrogen 234 78 62 50

Table 6: Fuel cell prices [€/kW], Own assumptions based on [14-17]

3 Results

Let us now turn to the results of the analysis. Figure 2 shows the vehicle stock of passenger cars, light-
duty trucks, medium-duty trucks and heavy-duty trucks in rows 1-4 and the four scenarios in columns
1-4.
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Figure 2: Vehicle stock in the four scenarios (columns) and vehicle size classes (rows).
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For passenger cars, we find at least 25% and up to 70% BEYV in 2050. The number of gasoline and diesel
cars are up to 30% in the first three scenarios and some 50% in focus synfuels. Hydrogen and NGV only
play a role if their fuel prices are very low. Thus, a quite large number of passenger cars will be electric
vehicles while the rest depends on fuel prices for synthetic fuels and hydrogen.

It is less complicated for light-duty vehicles (up to 3.5t) which will become electric in all scenarios.
Medium-duty trucks (3.5-12t) all contain a large number of battery electric trucks in 2050 in all scenarios
(at least 50%) while all other transport modes depend on energy prices. This is rather similar for heavy-
duty trucks where 30% are battery electric trucks and the other share are similar to medium-duty trucks.
In focus electricity, the leftover vehicles are catenary hybrid vehicles, focus hydrogen, methane and
synfuels cover their long-distance trips with trucks powered by these fuels.

Thus, quite a large number of road transport will be powered directly with electricity while longer
distances are covered with drive trains of the focus scenario.
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| ship diesel (conv., synth,, bio.)

base year

Transport Energy Demand [TWh]
o
focus electricity | ENEEEENEE

m diesel (conv, synth,, bio.)

focus synfuel

focus hydrogen [ R R R |
focus electricity | INNNIN |
focus synfuel _ l
focus hydrogen |INIIE [
i

focus methane
focus methane

W petrol (conv., synth,, bio.)
2018 2030 2050

Figure 3 contains exemplary results for the final energy demand in the transport sector in all four
scenarios in 2030 and 2050 distinguished by energy carrier. In 2030, we find only some energy demand
of alternative drive trains mainly stemming from the electricity demand of passenger cars. Heavy-duty
vehicles can partly be fueled alternatively with electricity, hydrogen or methane. There is a small energy
demand for methane-powered vehicles in the scenario focus methane.

In 2050, these differences are growing further. In focus electricity, earthbound transport and national
aviation is carried out electrically, the other sectors rely on liquid fuels due to technical restrictions.
When relying on liquid fuels (focus PtL), the heavy-duty sector, national aviation and parts of the railway
system use synthetic or biofuels resulting in a higher annual final energy demand. Hydrogen could play
a role in the same transport sectors and partly also for long-distance driving passenger cars as could
methane. The total final energy demand would be higher due to the lower efficiency of the drive trains.
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Figure 3: Final energy demand in 2030 and 2050 distinguished by energy carrier in the four scenarios

Assuming that no biofuels are available for transport since they are needed in other sectors for a
complete decarbonization, all fuels would have to be produced from electricity by 2050. If this was the
case, the electricity demand for transport would be as shown in Figure 4. We can clearly observe that a
large electrification would cause the lowest electricity demand for transport (~700 TWh) compared to
the focus synfuels or focus methane scenario (~1000 TWh). However, the large shares of liquid or
gaseous fuels in all scenarios shows the increasing importance of the aviation and navigation sectors
that are not expected to be largely electrified by 2050.
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Figure 4: Electricity demand in 2050 distinguished by energy carrier type in the four scenarios

To further bring down the share of conventional vehicles, we calculate sensitivities of energy prices on
conventional vehicle market shares in 2050 in scenario focus elecricity. These are shown for diesel and
gasoline vehicles for passenger cars in the first row and for light-, medium- and heavy-duty vehicles in
the second row of Figure 5.

We find the potential to further reduce gasoline and diesel passenger cars by almost half if we reduce
electricity prices or increase synfuel prices by 25%. With the same changes, we can decrease the truck
stock in all size classes to almost zero in 2050. Thus, these changes can be considered in an even more
ambitious scenario towards greenhouse gas neutrality in 2045.
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Figure 5: Sensitivities on conventional vehicle stock in 2050 in scenario focus electricity for changes in energy
prices

Discussion & Conclusions

This paper describes pathways for a complete decarbonization of transport in 2050 in Germany. These
pathways are based on simulations with the models ASTRA and ALADIN and subject to a number of
assumptions. Although the models have been used in multiple earlier publications, it is still discussible
whether the approach is appropriate. Yet, based on literature reviews for market diffusion models in the
transport sector, it is rather common [18-20]. Furthermore, the assumptions for all input parameters are
subject for debate. All assumptions are based on literature and we performed a sensitivity analysis for
the impact on model results for energy carrier prices to cope for this aspect.

What can we conclude from this analysis? We find high shares of electric vehicles in all scenarios and
this will be the most energy efficient and economical option in future. When batteries cause range
limitations due to a lower energy density, the most cost effective energy carriers with higher ranges will
be considered. In the scenarios, there can be some hydrogen vehicles if the hydrogen price is very low
or also methane (or synfuels) powered vehicles with a low price for methane (or synfuels). Yet, this
comes at a price related to primary energy necessary for their production. We need about 300 TWh of
additional electricity from renewables if it converted to methane or synfuels and used in the transport
sector. For comparison, the total renewable electricity generation in Germany was 250 TWh in 2020
which shows the need for an efficient use of energy and direct electrification where possible. This will
raise the question of importing these energy sources to Germany. Such import options do not exist at
present and must first be built up with enormous investments. Furthermore, against the backdrop of the
Russian war against Ukraine, questions of energy security then arise.

In any case, it is necessary to mention that these scenarios are very ambitious in assumptions and
outcome and that the decarbonization of the transport sector will require large efforts.
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