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Abstract

The complete reduction of greenhouse gases from the transport sector is a major challenge in the next
decades. Here, we focus on electric trucks and determine the optimal battery infrastructure combination of
battery and catenary electric tucks with respect to market shares and energy consumption. The analysis is
based on the market diffusion model ALADIN with which we run a monte carlo simulation with 1,000
random variable combinations for battery capacities and infrastructure to understand the interdependencies.
We find increasing market shares of battery electric and catenary electric trucks with higher battery
capacities. The influence of infrastructure on market shares and energy consumption is of secondary order

and limited.

1 Motivation

A large reduction of greenhouse gas emissions has to be contributed by the transport sector to reach
the goals from the Paris Agreement. While the transport volume of passenger cars is stagnating, it is
still increasing for heavy-duty vehicles, which will be the largest emitter of greenhouse gas emissions
by 2030 in Europe [1]. One promising solution to reduce these emissions is to largely introduce electric
trucks. As for electric passenger cars a decade ago, there is the issue of limited range and missing
infrastructure of the battery is not large enough. However, a tall battery increases vehicle weight and
reduces load capacity which may detain vehicle buyers from purchasing.

In this paper, we want to examine the optimal roll-out of infrastructure and battery sized for electric
trucks with respect to total system cost, maximum number of alternative fuel vehicles and minimum
amount of energy consumed. We examine two types of electric trucks: battery electric trucks (BET)
that are charged at high power charging stations (HPC) and catenary electric trucks (CET) that are
charged at overhead lines. These are considered to contain a diesel engine and tank (CET-D) or a
battery (CET-B). Different battery size and infrastructure combinations are analyzed in the market
diffusion model ALADIN and varied in a monte carlo simulation with 1,000 calculations for Germany
until 2050.

2 Methods and data

In this paper, we use the market simulation model ALADIN (Alternative Automobiles Diffusion and
Infrastructure) to determine the market shares of trucks in with different parameter settings. The
settings are randomly varied 1,000 times and we analyze the impacts of the parameter variation on
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market share, energy demand and total cost of the system. In the following, we will describe the model
ALADIN, the parameters to be varied and their variation range (see e.g. for a similar approach [2]).

The model ALADIN was used for many publications for the market diffusion of passenger cars and
heavy-duty vehicles [3-5]. The core of the model is driving profiles of several thousand vehicles and an
individual calculation of utilities for different drive trains. For trucks, the model is slightly simplified as
the driving profiles mainly consist of annual mileages and vehicle size information because further
data is lacking. For heavy-duty vehicles, the annual mileages from 6,000 trucks are analyzed that stem
from truckscout24 and KiD2010 [6, 7] and their representativeness has been shown in [5]. For every
vehicle, we first determine whether the vehicle can fulfill all the daily driving with the given drive train
and infrastructure and then calculate the drive train specific total cost of ownership (TCO). The lowest
TCO for each drive train determines the vehicle choice; the share of users with one drive train result in
its market share. By doing so with changing inputs over time, we can calculate the market diffusion of
alternative drive trains.

Here, we put special emphasis on the utility of infrastructure for the individual user. The following
assumptions are made:

e Daily mileage is calculated as annual vehicle kilometers traveled (VKT) divided by 260 working
days.

e The mileage on highways is based on a survey described in [4] as s, = 1 — exp(— #) with
0

Lo =127.3 km.

e We assume that HPC charging infrastructure are rolled out based on their utility with a
maximum coverage of 2,258 charging stations [8] with 100 km maximum distance between
charging stations and 20% charging in public.

e The user of a BET can charge overnight in a depot and starts his daily trips with a full battery.
When the battery is completely discharged, the battery range charged at the highway is based
on the infrastructure rollout and the additional range through HPCs is calculated as 1yp; == K -

:’;‘;g with nyp. being the number of HPCs and « the battery capacity.

e The infrastructure for CET is constructed based on truck usage. We order the highways
sections by the number of truck-km per segment within a highway and thus obtain stretches
with very high average utilization. The for individual user, this results in an individual utility
of an infrastructure construction of upap(x)=1-®(P-1(1-x)-02) with 6 = 1.19 and x is the share
of highway-km traveled. With this formula, we can determine the share of kilometers driven
below overhead lines and the amount that has to be fulfilled with a battery.

We calculate the market shares for 2030 and 2050 with the model ALADIN [5]. The basis for our
calculations is the scenario "TN-Strom" from [9]. The main assumptions on energy prices, battery
capacity and fuel cell prices are shown in Table 1.

Energy carrier price 2030 2050
Gasoline price 0.233 0.293
Diesel prices 0.197 0.261
Hydrigen price 0.285 0.235
LNG price 0.212 0.304
Electricity price industrial 0.101 0.085
Battery price BET 100 80
Battery price PHET 110 88
Fuel cell price 80 55

Table 1: Energy carrier, battery and fuel cell prices in Scenario "TN-Strom" in [9] [€/kWh].

Here, we will vary four main parameters: battery capacity of BET, battery capacity of CET, HPC
infrastructure density, overhead line infrastructure. The parameter ranges, evolution over time, and
cost assumptions are given in Table 2 and Fehler! Verweisquelle konnte nicht gefunden werden..
The random values for 2050 are drawn from an equal distribution.
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parameter Value range 2030 Value range 2050

battery capacity of BET [100, 500] [100; 1000] -
battery capacity of CET [100, 500] [100; 1000]
HPC infrastructure density [number of HPCs] [0;677] [0; 2258]
overhead line infrastructure [total construction in km] 10 [500; 4,500]

Table 2: Overview of variable parameters with parameter ranges in 2050 and start values in 2020.

We will neither vary the maximum number of battery cycles, nor the battery cost although both might
have a meaningful impact. Battery ageing through cycles is not considered in the approach and we want
to integrate battery ageing because of high power charging (because of high C-rates) in further work.

3 Results

With 1,000 random variations of the parameters in Table 2 and run the simulations. We determine the
market shares of the different solutions as well as their amount of electricity and diesel used.
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Figure 1: Influence of parameter variation on market shares in 2030. Upper left: Influence of CET infrastructure
and BET battery capacity on BET market share. Upper right: Influence of BET battery capacity and CET-B battery
capacity on BET market share. Lower left: Influence of BET infrastructure and battery capacity on BET market
share. Lower right: Influence of CET-B battery capacity and BET battery capacity on CET-B market share.

Figure 1 shows the results for the 2030 market shares in different settings. In the upper left corner of
the figure, we find an increasing market share of BET with battery capacity. It is not influenced by CET
infrastructure and seems independent of it. The same holds for CET-B battery capacity shown in the
upper right corner. Thus, with a battery with a sufficient size, the market share for BET can be increased
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independent of the CET battery capacity and inrastructure. However, market shares of BETs can be
further increased with more HPCs (lower left panel of Figure 1.Then market shares up to 35% are
possible. The market shares of CET-B can be increased with additional battery capacity - also
independent of BET market shares. Thus, in 2030 the main factor to increase the number of trucks with
alternative drive trains is by adding battery capacity. The two options do not have large influence on
each other's market shares. The effect of additional infrastructure for CET-B did not show a strong
effect. Thus, a pure infrastructure increase is not sufficient for both technologies.
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Figure 2: Influence of parameter variation on market shares in 2050. Upper left: Influence of CET-B battery
capacity and BET battery capacity on CET-B market share. Upper right: Influence of CET-B battery capacity and
BET battery capacity on BET market share. Lower left: Influence of BET infrastructure and battery capacity on
CET-B market share. Lower right: Influence of CET-B battery capacity and BET battery capacity on CET-D market
share.

Figure 2 contains selected market shares for 2050 with different variations. In the upper left panel, we may
observe that the market share of CET-B increases with larger battery size independent of the BET battery
size. Thus, the effect from 2030 remains stable in 2050. The market shares of BET decreases when CET-
B batteries are large or the battery capacity of BETs is low (upper right panel). So, we can now see an
impact and changing market shares from BET to CET-B. The market share of CET-B is also dependent
on BET battery capacity and infrastructure setup (lower left panel). Finally, if battery capacities for BET
and CET-B are low, CET-D gain the highest market shares with the scenario underlying assumptions
(lower right panel). Increasing the infrastructure for CET does not show clear effects on market shares.
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Figure 3: Energy consumption variation. Left panel: average electricity consumption per truck in 2030 w.r.t. CET-
B battery capacity and BET battery capacity. Right panel: Average diesel consumption in 2050 w.r.t. CET-B battery
capacity and BET battery capacity.

Figure 3 shows the effect of BET and CET-B battery capacity on electricity consumption in 2030 and diesel
consumption in 2050. Both panels show a very clear story. In 2030, we can increase the electricity
consumption by increasing BET battery size while CET-B battery capacity has hardly any effect. In 2050,
the diesel consumption is highest when BET and CET-B battery capacities are low. This corresponds to CET-
D market shares in Figure 3.

Discussion and conclusions

This analysis contains first results on the dependence of battery capacity and infrastructure setup on market
shares of battery electric and catenary electric trucks in 2030 and 2050. For this analysis, we used a monte-
carlo-simulation and varied battery sizes and infrastructure availability within certain boundaries.

These calculations are subject to a number of assumptions. The approach of using a monte-carlo-simulation
is discussible and a regression analysis of results or an analytical approach could be more useful [10]. Yet,
the approach is simple and retrieves first insights that can further be analyzed in more depth. The assumptions
for the integration of infrastructure is based on earlier publications [5, 8]. Other approaches for a direct utility
integration of infrastructure into the user buying decision for a truck have not been published so far to the
authors' state of knowledge. The assumptions for parameters stem from a very ambitious scenario for
greenhouse gas neutrality in Germany in 2050 and have been discussed in depth in [9]. If goals from the Paris
agreement are considered feasible, these assumptions are very reasonable.

From these first calculations, we can retrieve the following insights: (1) Market share for BET and CET-B
mainly depend on their battery capacity in 2030 and are only affecting each other in 2050. (2) Additional
infrastructure seems to only have a limited effect on market shares for BET and hardly any on CET-B. (3)
By increasing battery capacities, the use of electricity can be increased; otherwise diesel remains the
dominating fuel in this setup. Further analyses will also comprise the investments for battery capacities and
infrastructure.
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