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Summary

A model-based  development  process  is  presented  for  an  electric  vehicle  system  simulation  including  the

different vehicle subsystems and the thermal management system. The model development workflow consists

in starting with simple functional model. After that, the model complexity is increased. Finally, the HVAC

model is reduced using a surrogate approach to ensure the model real time compatibility. The system simulation

results over the EPA 5-Cycles highlight the impact of driving cycle and climate on the energy consumption and

driving range. 
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1 Introduction
Electromobility has expended in the last years and controlling the battery pack temperature is essential  to
improving the electric vehicle performance in terms of safety, battery life and driving range. 

The key challenge in studying the battery thermal management and analyzing the different design choices is to
handle the various parameters involved. For instance, climate conditions and dependency on the other vehicle
subsystems under real driving conditions must be considered. 

This work aims at answering this challenge. It presents an electric vehicle system modeling including: the
vehicle  powertrain,  the electric  circuits  and the different  subsystems cooling loops:  the battery,  the power
electronics and e-motor thermal management systems, as well as HVAC and cabin systems are represented.  

In  this  study,  a  model-based development process  is  proposed.  It  is  based on different  system simulation
modelling approaches. First, a functional representation of the vehicle subsystems is presented. Second, the
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refrigeration loop system and the chiller are modelled with physics-based components. Finally, the detailed air
conditioning system model is reduced using a machine learning approach based on neural networks to ensure
the model compatibility with real-time controls. 

The system simulation results over the EPA 5-Cycles procedure are presented. Above all, the impact of driving
cycle and climate on the energy consumption and driving range are discussed. 

2 Electric vehicle model development workflow 
An integrated and continuous modeling strategy have been developed in Sicmenter Amesim. Concerning the
electric powertrain model, its purpose is to compute the full energy balance of the battery under various driving
profiles and various environmental conditions. 

For a proper estimation of the energy consumption, the electric powertrain model has to represent first the sum
of all losses from the battery to the wheels: internal resistance of the battery, the electric motor and inverter
losses, the gearbox/reducer losses as well as the vehicle rolling and aerodynamic losses. Then, low voltage
auxiliary electrical consumers are also considered. More details on this model are given in the next paragraph.

Second,  thermal  management  circuits  are  impacting  the  electrical  power  consumption:  motor  to  drive  the
HVAC compressor, motors to drive the pumps and the low temperature radiator fan, the blowers, as well as the
electric heaters (PTC). 

To  account  for  the  cooling/heating  performance  of  the  thermal  management  systems  and  its  power
consumption, various levels of model are used. In all cases, a physical model of the liquid cooling loops is
used, at the opposite of the refrigerant loop:

 First, a functional representation with Coefficient of Performance (COP) is used. A parametric study is
performed for different values of COP to estimate its impact on the vehicle range estimation 

 Second,  the refrigeration  loop system and the  chiller  are  modelled  with physics-based components  to
accurately predict thermal results

 Finally, the detailed air conditioning system model is reduced using a machine learning approach based on
neural networks to ensure the model compatibility with real-time controls. 

3 The electric powertrain model 
A lumped-parameter model of the electric powertrain and vehicle have been developed. This model includes: 

 the motor and brake controller: it computes the requested motor torque to ensure the acceleration. It also
gives the needed braking command of the vehicle to follow the driving cycle.

 the chassis and environment: the vehicle component is used to evaluate the operating car acceleration and
velocity throughout the scenario. This velocity mainly depends on the electric machine torque, the resistive
forces applied on the vehicle and the vehicle mass. Environmental temperature can be also set

 the traction motor: the motor model gives the requested torque computed in the Vehicle Control  Unit
(VCU) to the powertrain. The motor model computes realistic operating characteristics (torque vs speed for
various battery voltage as well as loss maps) for a given motor considering its architecture and high-end
performances (continuous base power, maximum continuous torque and maximum speed). Model details
are presented in references [1] and [2]. A transmission ratio is applied between the electric motor and the
wheels.

 a high-voltage electric bus with the high-voltage battery and inverter but also the compressor for the HVAC
system and the electric heaters (one for the battery, one for the cabin). A dynamic equivalent circuit model
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of battery cell is used to represent a high-power Nickel, Manganese, Cobalt -Graphite (NMC-C) Li-ion cell
of  8  Ah.  The  model  simulates  both  electrical  and  thermal  behavior  of  the  cell.  The  model  has  been
calibrated and validated by experimental tests data from IFP Energies Nouvelles battery tests facilities [3].
The dynamic circuit model can consider the reversible and irreversible heat exchanges for a more accurate
thermal energy balance representation.

Figure 1: Parameters of the NMC-C battery cell model

 a  low-voltage  electric  bus  with  the  low-voltage  battery  and  consumers  such  as  electric  pumps,  low
temperature cooling fan and blowers

 the driver component: it  is used to predict the driver acceleration and braking commands to fulfill  the
driving scenario. The parameter window of the driver component makes it possible to define different
driving cycles, with or without slope. 

Figure 2: functional model of the electric vehicle
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EPA 5-cycle  procedure  [4]  has  been  developed  for  conventional  as  well  as  hybrid  vehicles.  For  Electric
Vehicles,  different  adjustments  are  done  to  Derive  FE  label  Estimates.  The  EPA uses  five  drive  cycles
performed on a dynamometer under controlled conditions to determine the fuel economy: a city cycle (FTP-
75), a gentle highway cycle (HWFET or HFEDS), an aggressive higher-speed cycle (US06), an air conditioning
cycle (SC03) and a cold-start cycle (cold FTP-75). The two last cycles highlight the effect of temperature on
energy consumption, especially in the case of EVs:

 Hot cycle: need to not only cool down the cabin but also the battery

 Cold cycle: no "free" heating coming from the ICE losses

The interest  of  quickly assessing the vehicle  range for  different  cycles and different  thermal  management
strategies is then growing. 

Figure 3: EPA 5-Cycle procedure

4 The thermal management system model

4.1 Reference vehicle

The thermal management system of the Hyundai’s new 2019 Kona Electric [5] has been selected to create the
simulation model.  

Figure 4: 2019 Kona Electric coolant loop modes

Three modes (Figure 3), function of the temperature conditions, correspond to the three different computer-
controlled valve settings and coolant flow diagrams:

 Cold conditions (bellow 0°C): both cabin and battery have to be heated-up. An electric heater is used to
warm-up the battery, a second one is used to heat up the cabin. An electric water pump circulates the fluid
in the battery then in the coolant heater. On the e-motor and inverter loop, the pump starts and circulates
the coolant in the low temperature radiator only when these electric devices reach a threshold temperature.
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 Cool condition (between 0°C and 25°C):  the heat  produced by the e-powertrain (battery,  inverter  and
motor) is released in the ambient through the low temperature radiator. Both circuits (battery loop and
emotor loop) are connected, and the two electric pumps are operating.

 Hot conditions (higher than 25°C): again, the two cooling loops are split. The battery is cooled down using
a chiller. The motor and inverter are cooled down using the low temperature radiator. The passenger cabin
needs to be cooled down as well, using an evaporator connected in parallel of the chiller on the same
refrigerant loop. The e-compressor is used to circulates the refrigerant in the 2-phase loop.

4.2 Initial results on the complete EPA 5-cycle procedure 

A model representing the various components (pumps, heat exchangers, PTC, valves) and its controlled has
been developed and connected to the electric powertrain model (Figure 5).

 

Figure 5: model of the electric powertrain thermal management system 

Simulation results for the 5 cycles are depicted in Figure 5. The 3 first cycles at 24°C are not requiring the
compressor of the refrigerant loop not the PTCs. Not surprisingly the range is lower on the SFTP-US06 cycle
(466 km) due to a higher mean value speed compared with HWFET (625 km) and FTP-75 (695 km). 
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Figure 6: vehicle range and vehicle velocity for the 5 driving cycles

4.3 Functional model of the refrigerant loop and chiller

Let’s now focus on the SFTP-SC03 cycle performed at 35 degC. The simulated range is 507 km for a COP of
the refrigerant loop of 3. The energy consumption due to the refrigerant loop accounts for almost 30% of the
total electrical energy consumption (Figure 7). 

Figure 7: SFTP-SC03 cycle at 35 degC - energy consumption split 

In a first approach,  a functional representation with Coefficient of Performance (COP) is used for the chiller
and the cabin evaporator. 

Concerning the chiller (Figure 8), the battery temperature triggers its activation. When activated, the chiller
removes  7kW of  heat  from  the  coolant  flowing  into  the  battery  pack.  At  the  same  time,  electric  power
consumption due to the compressor is computed using a constant COP.
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Figure 8: functional model of the chiller

Concerning the evaporator used to cool down the cabin, same approach has been used: the evaporator can
generate up to 3kW of cooling power to produce fresh air at 5°C. The electric power consumption due to the
compressor activation is also computed using a constant COP.

J. Steven Brown and al. [6] have determined that the values of the COP of automotive air conditioning systems
operating with CO2 and R134a varies between 2 and 4, function of the compressor speed, ambient temperature
and type of refrigerant used. As a consequence, a parametric study was performed for values of COP from 2 to
4, to estimate its impact on the vehicle range estimation. Results are presented in Figure 9 and shows that an
optimal refrigerant loop is  necessary to  guaranty temperature control  whilst minimizing the impact on the
consumption.  Indeed,  the vehicle  range can vary from 443 km (COP=2) to  546 km (COP=4),  meaning a
difference of 23%. 

Figure 9: SFTP-SC03 cycle at 35 degC – vehicle range function of the refrigerant loop COP 

4.4 Physics-based model of the refrigerant loop

The refrigeration loop system and the chiller are modelled now with a physics-based component approach,
firstly presented by El Bakkali and al. [7] and used for many studies for hybrid and electric vehicles such as
Natarajan [8], Lajunen [9], Rostagno and al. [10] and Linderoth [11]. This physics-based component approach
is essentially dedicated to the sizing of air-conditioning components (especially heat exchangers), proceeding to
transient  and  steady-state  analysis  of  systems (modeling  of  thermal  refrigerant  and  solid  wall  capacities),
designing, and testing current and new system configuration (more particularly refrigerant mixture systems and
heat  pump systems)  and  studying  the  impact  of  the  air-conditioning  system on the  whole  vehicle  energy
management. It is composed of basic elements (boundary conditions, sensors, ducts, pressure losses…) as well
as specific air-conditioning system global components such as evaporator, condenser, chiller and compressor.
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Figure 10: Physics-based model of the refrigerant loop and simulation results on EPA-5 cycle procedure

With this approach, the COP is no more imposed but is a consequence of the performance of the refrigerant
loop imposed by the sizing of the various components of the two-phase system.  

Figure 10: Physics-based model of the refrigerant loop and simulation results on EPA-5 cycle procedure

This  predictive  approach  has  a  consequence  in  term of  calculation  time.  CPU time  using  this  physical
approach is  430s for 600s simulated, which is still  faster  than real time but much slower than with the
functional approach (30s, so roughly 14 time slower).

4.5 Surrogate model of the refrigerant loop

The surrogate model of the refrigeration loop system and the chiller is created for the purpose of running
real-time simulations. Indeed, the physics-based modeling approach is not suitable for running with a fixed
time step solver.

The HVAC surrogate model is represented by neural networks which are made up of several layers, and each
layer consists of a fixed number of units or “neurons”. The first layer is the input layer, which has eight
dimensions as represented in the figure below. The model inputs are the compressor speed, the chiller coolant
flow rate in, the chiller coolant temperature in, the evaporator air flow rate in, the evaporator air temperature
in, the condenser air flow rate in, the condenser air temperature in and the condenser air humidity in. The last
layer is the output layer which has three dimensions as represented in the figure below. The HVAC surrogate
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model predicts the compressor torque, the evaporator total heat flow rate as well as the chiller total heat flow
rate. 

Figure 11: Neural network-based model inputs and outputs

4.5.1 Isolate the HVAC physics-based model and create reference datasets

The starting point is the vehicle model including the physics-based HVAC loop.

The refrigeration loop system and the chiller components are isolated from the other vehicle subsystems and
controls. The objective is to create a virtual test bench to generate reference datasets using the physics-based
modeling approach. Corresponding results will be used in a second step for training and validation of the
surrogate HVAC model.

Figure 12 shows the isolated HVAC physics-based model where the eight input parameters representing the
same surrogate model inputs are highlighted. Random values are assigned to these input parameters during a
batch computation including 180 runs and corresponding values are stored in the watch variable section.

The results regarding the compressor torque, the evaporator total heat flow rate and the chiller total heat flow
rate  are  stored  in  the  watch  variable  section  as  well.  These  results  represent  the  same surrogate  model
outputs.

Figure 12: Isolated physics-based HVAC model

4.5.2 Surrogate model creation

The datasets generated from the model described in 4.5.1 section were used to create the HVAC surrogate 
model. Corresponding model was generated using the Simcenter ROM Builder which is a general-purpose 
model order reduction tool [12]. It enables creation and export of reduced-order models from various sources of
data, including simulation results. A model sweep was performed to compute a set of predefined configurations 
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on the training data and generate an automatic exploration of models and hyperparameters. The evaluated 
models with corresponding training and validation fidelity are shown in the figure below.

Figure 13: Evaluated surrogate HVAC models

The rom-6 model showing the best fidelity was selected. The table below shows the model details and 
hyperparameter’s values [13]. Corresponding model was then exported as a Simcenter Amesim submodel.

Table1: Details of selected training model

Type  of
model

Training
fidelity [%]

Validation
fidelity [%]

Layer types Number  of
cells

Activation
types

Training
method

Dynamic
Neural
Network

96.99 96.77 [Dense',
'RNN',
'Dense']

[12,
 8, 
10]

['tanh',
'linear',
'tanh']

Levenberg-
Marquardt

4.5.3 Surrogate model integration

The generated surrogate model was integrated into the vehicle model by replacing the physics-based 
refrigeration loop system and the chiller. The surrogate model inputs and outputs were connected to the other 
vehicle subsystems using sensors and sources.

Simulation results for the SFTP-SC03 driving cycle with the ambient temperature at 35°C shows good 
agreements with the physics-based model. The figure below compares the vehicle model with surrogate HVAC 
results with the physics-based one in terms of the surrogate model outputs as well as the battery temperature, 
the cabin temperature, and the vehicle range. The latter shows an error of 3%. In terms of computation time, the
vehicle model with surrogate HVAC is 80 time faster than the real time.

 

Figure 14: Comparison between physics-based and surrogate model’s results
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5 Model preparation for control validation 
To use the model for the SiL and HiL tests, it must be run with fixed step solver and must be faster than real 
time at each integration step. Best practices to make a lumped parameter thermofluid model compatible with 
fixed step solver have been applied (reduce the number of state variables and remove short time constant by 
bundling volumes and pressure drops, replace detailed modelling approach by functional one…). 

The adapted model was run with a Euler fixed step solver by setting the integration time step to 0.002 s. The 
simulation was carried out on a laptop with Intel i5 2.6 GHz CPU, 16 GB RAM. Figure 15 shows an analysis of
the simulation time for the SFTP-SC03 driving cycle with the ambient temperature at 35°C: comparison of the 
main results (temperatures and range) as well as the cumulative CPU time for the simulation. Simulation time 
is 125 s at the end of the simulation, which is 1.8 times faster than the duration of the scenario (600 s): the real-
time capability of the model is then validated.

      Figure 14: Comparison between physics-based and fixed step solver model and CPU time of the fixed step model

6 Conclusion

This  work  aimed  presenting  a  model-based  development  process,  based  on  different  system  simulation
modelling approaches, with a specific focus on an EV thermal management system. A functional representation
of the refrigerant loop with Coefficient of Performance (COP) was used to estimate its impact on the vehicle
range.  The  refrigeration  loop  system and  the  chiller  were  in  a  second  step  modelled  with  physics-based
components  to  accurately  predict  thermal  results.  Finally,  the  detailed  air  conditioning  system model  was
reduced using a machine learning approach based on neural networks to ensure the model compatibility with
real-time controls. The system simulation results over the EPA 5-Cycles procedure were presented, the impact
of driving cycle and climate on the energy consumption and driving range were discussed. 
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