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Abstract

Lithium-ion batteries are seen as key elements to reduce global greenhouse gas emissions of transports
and energy sectors. Nevertheless, efforts still have to be made to minimize their environmental impact.
This article presents a pathway towards circular economy and more sustainable batteries, thanks to their
reuse in mobile charging stations for electric vehicles. This work provides the characterization tests
results and the modelization of second life batteries in a mobile charging station. Characterization test
and electric models presented may be used as references to assess aged batteries performances after their
first life. Detailed tests procedures and data results are shared in an open access datapaper.
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1 Introduction

Mitigating the climate change is seen as the major challenge for 21% century. According to the last Inter-
governmental Panel on Climate Change report, transport and electricity production account respectively
for 18% and 36% of the global greenhouse gas emissions [1]. To reduce this pollution, electrified vehi-
cles and renewable energies are presented as interesting options. For these usages, lithium-ion batteries
are key energy storage elements [1, 2].

Nevertheless, to date there are no sustainable batteries. That is to say that none lithium-ion batteries tech-
nologies can be manufactured without depleting natural resources while ensuring that it remain available
and affordable for many generations to come [3]. To approach this ideal goal, it is paramount to develop
solutions to reduce the detrimental impacts of both the batteries already on the market and the future
generations.
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The waste management hierarchy presented in figure 1 establishes an order of preference for action to
reduce and manage waste [4]. Reduction, reuse, recycling, recovery and disposal are the actions that
should be set up to reduce the environmental impact of a product.

Most preferred

. Reduction
Design to reduce the amount of waste produced

Reuse
Use materials multiple times

Recycling
Use materials in new products
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@ Energy recovery
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Recover energy and metals from waste

Disposal
Dispose waste to landFill

Least preferred
Figure 1: Waste Management Hierarchy. Adapted from [5]

Reduction is the most preferable action, it consists in designing the product in order to limit the waste it
will generate at its end-of-life. In the context of batteries, reduction consists in minimizing the quantity
of materials used in a battery in others words in reducing the battery size. Electric vehicle powered by
smaller batteries would be more economic and more environmentally-friendly [6, 7]. However, such
vehicles would have shorter driving ranges and would be more dependent on charging infrastructure.

To enable this shift, developing a reliable charging network is necessary to reduce “range anxiety”. Mo-
bile chargers are a solution to strengthen the existing infrastructure system. A mobile charging station
can be defined as a charger capable of delivering energy autonomously to vehicles, that is to say without
support from a human and with no need of an external energy supply. This technology has the advantage
of maximizing the utilization rate of the charging station as these chargers are capable of moving from
one vehicle to another. They also provide a more flexible charging solution as they are designed for being
deployed quickly at any location and with the possibility to adapt the energy embedded and the duration
of the stay to the drivers needs [8, 9]. The figure 2 presents two mobile charging stations.

Figure 2: Mobile charging stations from Mob-Energy [10] and Volkswagen [11]
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As the energy stored by these robot-like chargers is limited, they should be considered as a complemen-
tary technology to the existing ones. To date, the existing mobile charging stations can deliver up 30kWh
at a maximal charging speed of 50kW [8]. Powering these mobile charging stations by reused batteries is
possible and would be a step further towards circular economy. Reuse can be defined as the complete or
partial re-use of the battery for the original purpose the battery was designed for [12]. Reused batteries
are commonly named “second life batteries” in the literature.

This article investigates the deployment of reused batteries in power mobile charging stations. It presents
an electric characterization test and two electric models that may be used as reference to assess and
emulate reused batteries performances over time. This experimental and modeling work contributes to
the existing literature regarding second life batteries as it is the first to assess and model the performance
of a high-capacity prismatic cell extracted from real second life electric vehicles battery modules and
used in a dynamic application: a mobile charging station. It is also the first one to share experimental
data on second life batteries and provides the software used to analyze these data [13, 14].

2 Methodology

This section presents the equivalent circuit models used in the study and the experiments conducted to
calibrate them. The work presented can be divided into three parts. First, two equivalent circuit models
capable to emulate the voltage response of a lithium-ion cell are introduced. Then, the experimental tests
used to identify the models parameters are presented. Finally, the accuracy of each model is validated
thanks to cycles which are representative of a real mobile charging station usage. An extensive descrip-
tion of the cells and setup characteristics as well as the tests procedures and quality check are shared in
a datapaper [14].

2.1 Equivalent Circuit Models

Estimating accurately the voltage response of a lithium-ion cell over time is paramount in most applica-
tions. Indeed, thermal management, energy management and balancing strategies efficiencies strongly
depend on the estimation accuracy [15, 16, 17].

In a large number of industrial applications where real-time control is needed, electric models are pre-
ferred over electrochemical [18]. Their capability to emulate accurately the voltage with limited compu-
tational load make them suitable for embedded applications. Additionally, it is possible to characterize
them with non-destructive methods which is indispensable to limit the amount of wasted batteries.
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Figure 3: CPE model Figure 4: RC model

In this article, two equivalent circuit models have been chosen. The first one is presented in figure 3 and
will be named ”"C'PE model”. It consists of an open circuit voltage (OC'V') source in series with three
elements: a resistance Ry which models the ohmic behaviour, a RC circuit for modeling the charge
transfer and double layer processes and a Constant Phase Element (C PE) associated to the diffusion
behavior [19].

The second model is presented in figure 4 and will be named ”RC' model”. It consists of a voltage
source OCV in series with a resistance Ry which models the ohmic behavior, a RC' circuit for model-
ing the charge transfer and double layer processes and a second RC circuit associated to the diffusion
behavior [20]. To maximize the model accuracy during relaxation, adding more RC' circuits would be
necessary [21]. Nevertheless it would also drastically increase the computational time for more advanced
simulation using this model [22].
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2.2 Experimental Setup

In this study, a second life SAMSUNG SDI 94Ah cell with NMC positive electrode have been tested at
0, 25 and 40°C. This cell have been extracted from a BMW I3 module bought on the second life battery
market. Experimental setup was made of a Bitrode Battery Testing System and two climatic chambers
(Votsch VT 3050 and Friocell 707).

Table 1 presents the characterization test protocol at a single temperature and figure 5 is the voltage
profile of the test.

Table 1: Reference characterization test

Step Test Estimated duration (h)
1 Capacity test 18
2 Impedance test 8
3 Pseudo OCV test 42
4 Mobile charging station cycles 12

Step 1 is a capacity test, it consists of a serie of three full charge/discharge cycle. The mean value of the
three measurement is considered for the capacity measurement. Step 2 is an impedance measurement
thanks to a serie of current pulses at different state of charge (20, 30, 40, 50, 60, 70, 80 and 90%) and
current levels (0.3C, 0.5C, 0.8C, 1C and 1.3C).

Step 3 is a pseudo-open circuit voltage measurement thanks to a full discharge/charge at C/25. Finally,
step 4 is the validation cycles used to assess the models accuracy in a mobile charging station usages.
The validation profile and result are precisely described in the section 3

0 10 20 30 40 50 60 70 80
Time (h)

Figure 5: Voltage profile of the test
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2.3 Model identification
For each temperature, the models RC and CPE parameters are identified in four steps.

First, the capacity is calculated according to the equation 1. The mean value of the three measurement in
step 1 is considered.

t
. i(t)dt (1)

Qt) = 3600 tOZ

Q(t) is the capacity (Ah), t is the time of a cycle charge/discharge (s) and i is the current in the cell (A).

Second, the state of charge is computed according to the equation 2.

1 t
-1 ' 2
SoC 00 % [SoCyo + 3600 % O /to i(t)dt] 2)

SoC' is the state of charge of the cell (SoC=100% if the cell is fully charged and SoC=0% if the cell
is fully discharged), SoCy is the initial cell state of charge and Q,,ominas 1S the capacity given on the
datasheet (Ah).

Then, the open circuit voltage is determined thanks to the step 3 of the test. It is calculated by averaging

the low-rate charge and discharge voltage curves, this technique is known as pseudo-open circuit voltage
[23].

Finally, the impedance parameters are identified. The resistance 2y which models the ohmic behaviour
is determined first as it has the shortest dynamic. This impedance is determined from the voltage drop
presented in the figure 6 .

W e ok
© © ©o
T T T

Voltage (V)

w
~
T
9

B

T

&

@
(e
T

Extrapoled

point \

| R o S

@
&)
T

3.3
119.6 119.8 120 120.2 1204 120.6 120.8 121
Time (s)

Figure 6: R determination. Inspired from [19]

As the battery cycler sampling frequency may be not high enough to have numerous data points during
the front voltage, a linear extrapolation is done for.
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The charge transfer and double layer impedances are numerically determined by minimization of the
quadratic error between the voltage output of the model and the response of the cell [19]. The equation
3 and 4 respectively present the error function for the RC and the CPE models.

—t —t
ro P )
errorgc is the error between the experimental measurement and the model simulation (V), U,y is the
cell voltage measurement (V), OC'V is the open circuit voltage (V), I is the current in the cell (A),

Ry is the resistance which models the ohmic behavior (Ohm) and t is the time (s). R1, C'1, R2 and C'1
are the parameters to calibrate to minimize the error.

errorcpg = Ut — [OCV — IenRo — I,

errorre = Ueeyp — [OCV — Ief(Ro + R1 + Ra) + Leen(exp(

3)

tOé
ell@]
errorcpg 1s the error between the experimental measurement and the model simulation (V), Uy is
the cell voltage measurement (V), OC'V is the open circuit voltage (V), I..; is the current in the cell

(A), Ry is the resistance which models the ohmic behavior (Ohm) and t is the time (s). ) and « are the
parameters to calibrate to minimize the error [24].

“)

3 Results

In this section, the experimental and simulation results are presented. All the data presented have been
processed thanks to the software DATTES [25].

3.1 Experimental results

The figure 7 presents the open circuit voltage measured in step 3 as a function of depth of discharge at O,

o
25 and 40°C.
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Figure 7: Experimental OCV-DoD relationship curves for second life battery at 0°C (blue dot), 25°C (green dot),
40°C (red dot) and the datasheet OCV-DoD relationship curve at 25°C (dashed line)
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In the datasheet, the open circuit voltage is measured thanks to a galvanostatic intermittent titration
technique at 1/3C. This methodology is more precise than the pseudo-ocv as it is not subject to current
polarization.

The table 2 gathers the capacities measured during the step 1 at 0, 25 and 40°C.

Table 2: Capacity measurements and state of health at 0, 25 and 40°C

Temperature 0°C 25°C  40°C

Second life cell Capacity (Ah) 86 92.1 93.1
Datasheet Capacity (Ah) Nodata 952 95.7

State of Health Capacity (%) Unknown 96.7 97.3

The capacities given in the datasheet have been measured in charge with a CC/CV profile and a 1C
current. This methodology is very close from the one used in this work. A state of health “capacity” can
consequently be calculated thanks to the equation.

Q)

Solg =100+ 5~ " S)
nomina

SoH(, is the state of health “capacity” (%), (Q(t) is the capacity measured during the test (Ah) and
Qnominal 18 the nominal capacity (Ah).
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Figure 8: 5 seconds experimental resistance at 1C and 0°C (blue line), 25°C (green line), 40°C (red line)

The resistance given in the datasheet can not be compared to the measurement because they have been
measured at 413A and 294A while in the step 2 the maximal current was 122A.
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3.2 Validation profile

The section 2.3 have presented the identification of the models parameters, which consisted in determin-
ing each parameter separately thanks to a part of the characterization test. In this section, the different
parameters are gathered to form the models RC and CPE and run simulation.

A mobile charging station’s usage profile inspired by real ones have been used to compare the models
capabilities to emulate the voltage response of the reused batteries. The real usage profiles have been
provided by the company Mob-Energy.
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Figure 9: Experimental data (blue line) compared to simulation results for the CPE model (green line) and the RC
model (red line) at 25°C

Figure 9 (a) and figure 9 (c) present the mobile charging station usage profile with power levels given for
a single lithium-ion cell. The voltage response of a cell is also presented in figure 9 (b) and figure 9 (d) .

The usage profile plotted on figure 9 (c) is a power profile. It is composed of a high power discharge
(about -150W) which corresponds to the energy transfer from the charger to the vehicle. Then, the robot-
like charger moves to charge on the grid which corresponds to the low power discharge (almost OW).
Finally, the mobile charging station is charged by the grid at approximately 300W. It can now move to
the next vehicle to charge. This pattern is repeated 3 times in a 6 hours time slot as presented in figure 9

(a).
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3.3 Model accuracy analysis
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Figure 10: Cumulative distribution function of error probabilities for CPE model simulation (green line) and RC
model simulation (red line)

Figure 10 presents the error distribution functions of the models. For both the CPE model and the RC
model, the simulation error is lower than + 6mV, £ 10mV and + 16mV in respectively 90, 95 and 99%
of the profile. These levels of accuracy are in the order of magnitude of other electric models in the liter-
ature [19, 20, 26]. To improve the models accuracy, the parameters responsible for the voltage dynamics
especially during relaxation, and end of charge and discharge should be optimized.

Table 3 shows that CPE and RC models have comparable absolute average error but simulation time is
significantly in favor of the later. To run simulations with limited computation load, the RC model should
be favored.

Table 3: Performance comparison of the models

Simulation time (s) Average absolute error (mV)

CPE model 91 5.5
RC model 30 4.7
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4 Conclusion

This article presents a procedure for characterization and modelization through equivalent circuit models
for second life batteries. The main experimental and modelization results are presented in this article.
An extensive description of tests procedures and data test results are shared in a datapaper [14]. The
software used in this study is called DATTES and is also open source [25].

This experimental and modeling work contributes to the existing literature regarding second life batteries
as it is the first to assess and model the performance of prismatic high capacity cell extracted from a real
electric vehicle battery pack. It also describes a new dynamic application for reuse: the mobile charging
stations. The models presented have shown their capability to emulate accurately the voltage response
of a SAMSUNG SDI 94Ah cell. Future works will aim to improve the accuracy of these models and
investigate the evolution of the model parameters with ageing.
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