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Executive Summary

This paper deals with an energy optimized torque controller for the powertrain of an energy-limited
electric Formula Student car. Limited battery capacity within electric race car designs requires energy
management solutions to minimize race time while simultaneously controlling and managing overall en-
ergy consumption to finish the race. An energy-managing torque control algorithm was developed in
order to use the finite onboard energy in a manner that optimized lap time performance and decreased
energy consumption when energy deficits occurred. The longitudinal dynamics of the vehicle was rep-
resented by a linearized first-principles model. The plant was validated against a parameterized electric
Formula Student race car model in a commercial lap time simulation software. A Simulink-based Model
Predictive Controller (MPC) controller architecture was created to balance energy use requirements with
optimum lap time. This controller was then tested against a hardware-limited system as well as a torque-
limited system in a constant torque request and varying torque request scenario. The controller decreased
the elapsed time to complete a 150m straight line acceleration by 11.4% over the torque-limited solution,
and 13.5% in a 150m representative Formula Student maneuver.
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1 Introduction
In the development of an electric race car, the battery pack sizing often reflects a compromise between
range and mass, and therefore ultimate performance. Most electric motorsport is limited by the energy
capacity of the battery, rather than the total power capability of the drivetrain. This applies especially to
Formula Student (FS) battery systems, which can have capacities of less than 7 kWh. The car is limited to
80kW power by FS regulations, however preliminary lap time simulations indicate that an energy capac-
ity of approximately 10 kWh would be required to finish the endurance event at the maximum regulatory
power level. Thus, the optimal use of this energy can produce significant lap time improvements over a
constant power or torque limitation. While highly skilled drivers can approximate an optimal strategy by
using lift and coast techniques, Formula Student relies on amateur drivers and automated torque control
and energy saving methods are preferable.

The need to optimize energy consumption in internal combustion engine (ICE) powered motorsport has
been long understood, with associated trade-offs between fuel consumption, fuel mass, range, and avail-
able power [1]. This has been analysed in numerous ways with most real-time applications of power opti-
mization independent of driving path [2, 3, 4]. In order to minimize lap time, or maximize average speed,
and simultaneously reduce energy consumption, the controller must use energy when it contributes most
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to acceleration. As drag squares with speed, this occurs at lower velocities [5]. This is exacerbated by the
drag created by downforce generating aerodynamic packages commonly used in motorsport competition.

A dynamic optimization problem was created to control this Single Input Multi Output plant. The Model
Predictive Controller (MPC) calculates a minimal cost over a receding prediction horizon using a defined
plant model at a repeating time step as shown in Figure 1 [6].

Figure 1: Prediction Horizons within Boundary Limits. Figure adapted from [6].

The manipulated variables u can be held within established limits, as can measured outputs y, allowing
MPC to consider the physical constraints of the system. As the optimal output is recomputed at every
time step k, MPC tends to incur relatively high computational costs compared to other Proportional, In-
tegral, Derivative (PID) control and Linear Quadratic Regulation (LQR) methods. However, as real-time
controllers gain computational power, MPCs are now able to be used in high frequency real-time appli-
cations [2, 7]. These methods are of great interest to driverless systems’ researchers as they are often
used for motion and route planning in driverless motorsport [8, 9].

MPC uses two horizon values in its calculation. The first, P , is the prediction horizon, or number of
steps into the future the model predicts and optimizes for. This allows the controller to avoid constraints
as well as make decisions while understanding the long term implications of the control action, such as
plants with a negative short term response and positive long term response, or in plants with a long delay
period [6]. The second horizon is the control horizon, which predicts the next Mcontrol moves in the
future. Only the first of these control moves is implemented, the rest are discarded. This is typically a
small number, between two and five [6, 7].

Online MPC control is of significant interest to driverless researchers, and has recently been shown to
work in driverless systems at 10− 50ms sample rates, indicating that this control methodology is possi-
ble in real time onboard systems [8, 9]. This paper will introduce a novel feedback control methodology
for energy-limited race vehicles, that uses a model based control algorithm to reduce energy use in an
optimal fashion when consumption is greater than targeted. This real-time algorithm is adaptive to un-
foreseen changes in race conditions, such as a safety car or driver change, as it will repeatedly re-target
the optimal solution [10]. Similar control methodologies are employed in powertrain and energy man-
agement control strategies implemented in Formula 1, but a gap in the research exists when applied to a
purely electric race vehicles [3, 11, 12].

In this paper, a motorsport specific, model based predictive energy managing torque control system is
described. A similar predictive algorithm applied to energy management in electric motorsport could not
be identified in the scientific literature. Compared to a torque-limited approach with the same energy
consumption, this methodology provides a 11.4% improvement in elapsed time to complete the course
of an 150 meters straight line acceleration. A Formula Student representative 150m maneuver was also
investigated – the maneuver was extract from a real endurance event at the Michigan – USA competition,
which is a course of around 1km where vehicles compete for the minimum elapsed time over 22km (22
laps). The the MPC approach reduced the elapsed time by 13.5%, as well as responding to energy deficit
conditions by reducing torque in an optimal manner.

In the following section, a state-space linearized vehicle model is developed and compared to a transient
model using the commercial software AVL VSM™. The MPC is presented in Section 3 alongside design
considerations for the number of prediction and control horizons and the definition of setpoints and signal
weighting. Results are presented in Section 4 for three scenarios: straight line acceleration, Formula
Student maneuver and a reduced prediction and control horizons scenario to verify the algorithm stability.
Finally, this work is summarized and concluded in Section 5.
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2 Vehicle Model
Designed to reduce computational cost of the controller, the plant model is based on a simplified vehicle
longitudinal dynamics model using first principles (Equation 1). It express a lumped mass being accel-
erated by a thrust force – torque from the electric motors, drive ratio and tire rolling radius; which is
resisted by aerodynamic drag, rolling resistance and road gradient forces. Equation 2 express the power
output based on the battery pack voltage v and torque of the motors.
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Where, V is the vehicle velocity, E is the energy available on the battery pack and Tr is the total motor
torque – from the four in-hub motors. The remaining parameters are described in Table 1 alongside the
values used to populate the model.

Table 1: Vehicle parameters

Parameter Value Units Description
ηt 0.9 - Transmission efficiency
e 1.4 - Rotational mass factor
m 300 [kg] Vehicle mass
ρ 1.225 [kg/m3] Air density
A 2.2 [m2] Vehicle frontal area
g 9.81 [m/s2] Gravitational acceleration
r 0.203 [m] Tire rolling radius
kt 0.26 [A/N.m] Torque constant
iθ 15.55 - Final drive ratio
CL - Coefficient of lift
CD 0.40 - Coefficient of drag
α 0 [deg] Road inclination angle
f 0.015 - Rolling resistance coefficient

To verify the fidelity of the simplified model in comparison to the real dynamics of the system, a transient
model was created using AVL VSM™ software. The energy consumption was then compared to the
simplified model in which a Root Mean Squared Error (RMSE) of 0.008 kWh was found (Figure 2).
The comparison was based on a Formula Student representative maneuver over a series of medium speed
corners with continuous positive torque request – no braking or coasting. This data comes from a Formula
Student endurance event in Michigan, USA.

Figure 2: Energy consumption comparison between a transient model developed using AVL VSM software and a
simplified lumped mass model.
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2.1 Identified Linear Time-Invariant (IDLTI) Model
MPC based control methodologies generally rely on linear time-invariant (LTI) state-space representa-
tions of systems [13]. However, real world dynamical systems are very rarely purely linear [10] and in
fact, the lumped mass vehicle model used in this paper is time invariant and nonlinear: as drag forces
square with velocity, the outputs remain independent of absolute time. The representation of a LTI as-
sumes the state-space format of Equations 3 and 4.

x(k + 1) = Ax(k) +Bu(k) (3)

y(k) = Cx(k) +Du(k) (4)

In the first equation, x is the state vector of the system, A is the state matrix, B is the input matrix and
u is the input vector of the plant. In the second equation, the output vector y is a function of the output
matrix C, the feed-through matrix D, and the state and input vectors. The A, B, C and D matrices are
function of the plant dynamics and were determined through the process of system identification.

With the help of the MathWorks System Identification Toolbox™, a third and a fourth-order linearized
plant were developed. The process consists of evaluating the system response to a given set of input
and identifying the set of parameters of the state-space model that better approximate the system re-
sponse compared to the nonlinear plant. Hence, these models are called Identified Linear Time-Invariant
(IDLTI) models [14]. In this work, three step inputs of magnitudes similar to those expected in real-world
conditions were used for the system identification. Figure 3 compares both models with the nonlinear
plant.

Figure 3: Comparison between a 3rd and 4th order linearized models with the nonlinear plant. NRMSE for all
three inputs were greater than 98% for the 3rd order model and greater 99% for the forth order model.

Because the second derivative of Equation 1 is relatively small, this vehicle model is considered only
slightly nonlinear [10]. Even then, the linearization process introduces inaccuracies to the model and
thus, a comparison between the linearized model against the nonlinear plant needs to be evaluated. This
was accomplished by a Normalized Root Mean Squared Error (NRMSE) cost function (Equation 5):

fit = 100

(
1− ∥y − ŷ∥

∥y −mean(y)∥

)
(5)

Where y is the validation data output, ŷ is the output of the model, and fit is a percentage. Values of
100% indicate a perfect fit, whereas a fit of at least greater than 75% is recommended for stable control
[7]. The 3rd order model achieved a NRMSE greater than 98% whilst the 4th order linearized model had
99% fit with the corresponding results of the non linear plant. Because of the negligible difference of the
model fit, the 3rd order model was selected to reduce computational costs.

3 MPC Design
The MPC controller design is illustrated in Figure 4. The set point block diagram gives the controller
the hard limits of the motor torque, umax and the target velocity set point, r. The MPC then optimizes
the energy consumption based on the feedback of the battery energy capacity, torque output and actual
velocity compared to the target velocity. The implementation of the controlled was realized using the
MathWorks MPC Designer Toolbox™.
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Figure 4: MPC block diagram. Energy consumption is optimized based on the feedback of the battery energy
capacity, torque output and vehicle velocity.

3.1 Horizons
The MPC controller calculates an optimal solution to a quadratic control problem. The minimal cost is
computed over a receding prediction horizon using a defined plant model at a repeating time step. Two
horizons are therefore implemented – visualized previously in Figure 1: prediction and control horizons.
In general, longer horizons increase controller stability but come at higher computational cost because
of the increased number of optimized solutions it computes. If control horizons can be lowered without
affecting the controller’s response, this is typically taken as indication that the prediction and control
horizon times are adequate [6]. In this work, a prediction horizon of ten time steps and a control horizon
of two time steps were used.

The relation between the cost function and the number of horizons used by the MPC is dictated by how
close the evaluation of the cost function is to the design constraints – in this work: energy consumption
and target velocity. A longer prediction horizon is needed to find the optimal solution if the evaluation of
the cost function is close to those constraints. On the other hand, if the cost function is not reaching those
limits, it is possible to reduce the number of the prediction and control horizons without major effects
on the optimal solution, which is advantageous to reduce computational costs. In order to investigate
instabilities caused by reducing the predictive and control horizons, these values were reduced to five
and one respectively, further discussed in the results section.

3.2 Set Point and Control Signal Weighting
The MPC uses five setpoints: torque request [N.m]; rate of change of the torque request [N.m/∆t];
maneuver target velocity [km/h]; target energy consumption [kW ];and finally the torque output [N.m]
to meet the energy consumption and target velocity constrains. Each set point is weighted differently
in the MPC cost function. Multiple weight schemes were tested for this implementation using the MPC
Designer Toolbox™. In general, the driver’s torque request carried the less weight than the velocity term.
This is partially because the units used in the torque request are generally larger than those seen in the
velocities. The controller attempts to meet the torque request until the cost weighed against that of the
other set points grows too high. The energy term carried greater weight because the deviation from the
set point occurs over smaller absolute numbers when compared to torque and velocity. This term reduced
torque limits as energy use exceeded targets. Similarly, as speeds rises over the predetermined set point,
the cost increases, and the controller reduces torque. The set point weighting parameters used in this
work are described in Table 2.

Table 2: Set point weighting parameters

Variable Weight1

Manipulated Variable – Torque request [N.m] 0
Manipulated Variable rate [N.m/∆t] 0.1

Target velocity [km/h] 10
Energy consumption [kW ] 13

Torque output [N.m] 3
1dimensionless
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4 Results and Discussion
The purpose of the MPC controller presented in this paper is to optimize torque delivery during accel-
eration events. Two scenarios were investigated: 1. straight line wide-open throttle acceleration event
over 150 meters, and 2. cornering maneuver of continuous positive torque request over 150 meters – no
braking or coasting.

Figure 5: Constant torque request scenario. a) speed profile, b) torque request c) energy remaining in the battery

In the first scenario, the vehicle accelerates from a low speed corner onto a straight line, the length of
the straight represents the longest continuous straight a Formula Student car is likely to encounter in
an endurance event. In Figure 5, the MPC controller receives an arbitrated constant torque request of
39.8Nm, which is the maximum torque output of the motors (hardware limit). The system response is
then compared between a torque-limited approach with an equivalent energy usage.

As expected, the MPC torque setpoint decreased with distance to optimize the energy consumption as
shown in Figure 5 b). This is explained because the most efficient use of the energy in an acceleration
maneuver occurs at low speeds, as thrust force is resisted by the least amount of drag force, which in-
creases with the square of the velocity (12ρCdAV

2 part of Equation 1) . Compared to the torque-limited
approach, an average velocity improvement of 8.1 km/h was observed using the MPC strategy, resulting
in a time improvement of 1.31 seconds (11.4%) for the same energy consumed.

Figure 6: Formula Student maneuver torque request scenario. a) speed profile, b) torque request c) energy remain-
ing in the battery

In the second scenario, the maneuver input is the same torque request used in the vehicle model verifi-
cation (Figure 2). Figure 6 compares the MPC approach with the torque-limited approach. The MPC
results in an average velocity of 42.5 km/h, 5.6 km/h faster than the equivalent energy used by the
torque-limited system. This yields a 1.99 seconds, or 13.5% lap time improvement over the course of
150 meters.

In order to investigate instabilities caused by reducing the predictive horizon was reduced to five and the
control horizon reduced to a single time step. The results are shown in Figure 7, while the controller was
less able restrict energy use, no instability or boundary violations in the controller were observed, indi-
cating that with this controller and plant, reducing control and prediction horizons are a viable method
of lowering computational cost if shorter time steps are desired.
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Figure 7: Reduced horizons scenario. a) speed profile, b) torque request c) energy remaining in the battery

5 Conclusions
The MPC torque limiter meets the preliminary requirements of the system – it provides significant im-
provements in laptime and energy use, while balancing the immediate torque demand and associated en-
ergy use against the overall state of energy in the system. Computational cost is well within the limits of
the rapid prototyping controller. By using the hard constraints allowed by MPC methods, torque safety is
maintained. Therefore, Model Predictive Control methods show significant promise for energy-limited
race cars, especially Formula Student-class electric vehicles – which are required by the competition
rules to have amateur drivers, this controller is especially helpful to such drivers, since it decreases cock-
pit workload during acceleration events, eliminating the need for drivers to pick lift and coast points in
order to save energy.

Many control architectures are possible to solve a given set of control requirements. While this controller
housed the energy management function of the controller within the torque controller, future explorations
of this method should consider a low frequency energy management hypervisor to evaluate the energy
state of the system and estimated energy use per lap using a plant model generated from a laptime sim-
ulation as suggested by [2]. This offloads the computational cost of energy management to a very low
frequency controller, freeing up computational headroom to increase the frequency of the torque con-
verter. The actuators of the hypervisor can include the weighting, setpoints, and limitations of the torque
controller. The torque controller can then be expanded to include thermal winding costs of the torque
request as well as accumulator thermal costs.

This paper outlines the process in which an MPC based control algorithm can be implemented in elec-
tric motorsport powertrain optimization, and provides a starting point for additional control algorithm
development in Formula Student.
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