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Executive Summary

This paper presents the development and validation of an automated tool for powertrain topology design
and control (TOPDSIGN), which aims at providing initial advice on the powertrain design and control for
hybrid-electric vehicles. The tool incorporates a library of real-life components modelled using quasi-
static and convex representations. We propose a three-layer optimization framework that solves the joint
design problem. The outer loop picks the most suitable topology, while the intermediate one selects the
best components. The most inner layer of this framework derives the energy management strategy by
applying decomposition to the Equivalent Consumption Minimization Strategy (ECMS), and by doing so
a scalable and reusable solution is developed. All designs are simulated using an automatic closed-loop
methodology implemented in the Simulink/MATLAB environment. Two validation use cases verify and
validate that the tool produces viable results.
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1 Introduction
The automotive industry, like many other industries, is set the goal of drastically reducing its CO2 impact,
and ultimately eliminating it through net-zero emissions in the long run by 2050. To do so, intermediate
steps are required and legislated, such as the CO2 emissions benchmarks for passenger vehicles, heavy
duty commercial vehicles, and others, set (and revised) regularly by the European Union [1]. In addition
to the CO2 targets, many European cities introduce zero emission zones from 2025 onwards, placing
restrictions on the operations of engines within cities [2]. These various requirements are pressuring au-
tomotive OEMs to come up with smarter and greener solutions when designing vehicle powertrains. A
highly noticeable trend by manufacturers is vehicle hybridization and electrification. While battery elec-
tric vehicles currently still suffer from economical (high initial cost) and technological (range, charging)
limitations [3], electric hybrids show a greater potential for the near future.

Vehicle hybridization offers many advantages such as engine downsizing, elimination of idling and
clutching losses, additional control freedom, and energy recuperation. Most manufacturers have been
using heuristic (rule-based) control for this additional control freedom, mainly because of its simplicity
and robustness. However, this type of control limits the potential of the hybrid-electric vehicle (HEV) as
it does not provide the globally optimal solution. Conversely, algorithms such as dynamic programming
guarantee global optimality but are computationally expensive. Such solutions are often tailored to a
specific problem and are therefore, not reusable for other topologies. Realizing the trade-off between
heuristic and optimal control strategies, TNO has developed a scaleable Modular Energy Management
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Strategy (MEMS) [4]. MEMS is based on applying dual decomposition to the Equivalent Consumption
Minimization Strategy (ECMS) optimal control problem, reformulated into a scheme which is scalable.
In other words the optimal control problem is split into smaller problems related to each subsystem. This
approach is considered to be able to substitute current rule-based control and exploit the advantages of
hybridization to a higher degree.

Electric hybrids are still a new technology and extensive know-how for designing such a powertrain for
specific usage profiles is not common. Choosing the right configuration of engine and electric machine/s
is often tricky and heavily dependant on the type of vehicle and its use profile. Simultaneously, optimiza-
tion studies which deliver optimal results often focus on a single topology for small fixed set [5],[6],[7],
[8]. Therefore, a problem arises for the industry where manufacturers face a tough choice - either spend
significantly large budget on optimizing several topologies and select the best one or select via engineer-
ing judgement and optimize only one. To solve this issue OEMs need a tool which can advise which
would be the optimal topology for a given usage profile. Thus, the objective of this paper is to develop an
automatic tool for hybrid-electric powertrain topology design and control, incorporating TNO’s Modular
Energy Management Strategy. This tool’s objective is to recommend a topology, component sizing, and
derive an energy management strategy based on a library of actual components.

In the remainder of this paper, the developed tool and its required inputs are introduced in Section 2. In
this section the optimization framework (the core of the tool) is discussed in detail. Results from two
optimizations are presented in Section 3, while Section 4 discusses two important aspects of the study.
Finally, conclusions from this paper are drawn in Section 5.

2 Methods
Fig. 1 provides an overview of the developed automated tool for powertrain topology design and control
(named TOPDSIGN). This section introduces the component library and how quadratic fits are performed
on these components in Subsection 2.1. Subsections 2.2 and 2.3 discuss the topology library used and
the required user inputs, respectively. The optimization framework and its layers are formulated in
Subsection 2.4. Finally, the methodology for automatic closed-loop testing of the powertrain is presented
in Subsection 2.5.
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Figure 1: Overview of the TOPDSIGN tool (black indicating a data file and red - script, function, model or app).

2.1 Component library and quadratic fitting
An extensive list of real-life components is incorporated in the tool. These components are taken from
the ADVISOR library [9] and can be scaled linearly with a maximum scaling factor defined by the
user. All components are modelled following the quasi-static modelling approach in which the physical
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causality of the system is reversed. This subsection briefly discusses the modelling methodology for
the main components of a HEV powertrain. Additionally, it explains how these quasistatic models are
quadratically fitted to derive convex models.

2.1.1 Electrical machine
In quasi-static modelling the electrical machine rotational speed ωem and torque Tem at the shaft are used
as inputs to calculate the required or produced electrical power. Therefore, all electric machines (motors
and generators) are modelled as efficiency maps. Motors can both produce and deliver power as their
maps cover two quadrants, while generators can only produce electrical power. Scaling is performed in
linear fashion (up to some limit) by multiplying the torques array of the efficiency map by the scaling
factor.

2.1.2 Internal combustion engine
The internal combustion engine is modelled similarly to the electric machine but instead of efficiency,
fuel-consumption maps are used. It is obvious that an engine can only deliver mechanical power. Torque
Tice is calculated using the normalized mean effective pressure pice

Tice =
pice · Vd

N · π
, (1)

where Vd is the engine displacement volume and N is the stroke number. The engine torque is linearly
scaled with its displacement volume (up to some limit). During simulations, it is assumed that any torque
level can be achieved within the engine’s limitations by adding the necessary amount of fuel. Warm-up
effects and transient behavior of engine are not taken into account.

2.1.3 Electrical energy storage
The battery is initially modelled as an equivalent series resistance and a constant voltage source. It is as-
sumed that the open-circuit voltage is neither state-of-charge, nor temperature dependent. However, such
modelling requires precise parameter fitting, which can be challenging and time-consuming. Instead of
that, the battery is represented as a box in which any amount of energy can be consumed or stored as
long as it is in the power limitations. These power limitations are a function of the state of charge (SoC)
of the battery (more on that to follow). Similar to the power limitations, the battery efficiency is depen-
dent on the SoC. Temperature effects are completely neglected during simulations, as the operational
temperature of the battery is considered to remain constant.

2.1.4 Transmission
A discrete-gear 5-speed gearbox is used for all possible topologies. Gear ratios are designed to reach the
top speed and standstill slope requirements, specified by the user. The gearshift strategy is derived in the
inner loop of the optimization framework which is discussed in Section 2.4. Each gearshift is assumed
to be lossless, but the gearbox as a component has a constant efficiency.

2.1.5 Quadratic fitting
An important aspect within MEMS is obtaining accurate (as much as possible) convex models of the
components. Generally, convex optimization is computationally effective and achieves the global opti-
mum (valid also for ECMS which is in the core of MEMS). Subsystems are models as quadratic relations
between their input (um) and output power (ym). For the combustion engine, the motor and the generator
the fitting parameters are speed (ωm) dependent, i.e.,

qm(ωm) · u2m + fm(ωm) · um + em(ωm) + ym = 0 (2)

and the output power of the mover (ym) is constrained with

ym,min(ωm) ≤ ym ≤ ym,max(ωm), (3)

where m ∈ {ice, em1, em2, em3, em4, eg}, eg is abbreviation for electric generator and qm, fm and em
are the fitting factors. For the high-voltage battery the fitting parameters are a function of the state of
charge (SoC), i.e.,

qm(SoC) · u2m + fm(SoC) · um + em(SoC) + ym = 0, (4)
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where m ∈ {hvb} and hvb is abbreviation for high-voltage battery. Battery energy storage dynamics
are used for the model and are given by

Ehvb = −u̇hvb, (5)

where Ehvb is the energy storage of the battery.

ECMS requires a convex representation of the components to guarantee optimallity. As already men-
tioned, MEMS uses ECMS in its core and therefore, also requires convex models to obtain optimal
results. To ensure the component models are convex the second-order condition for convexity [10] is
applied

∇2f(x) ⪰ 0, (6)

where f is the function (in this case the quadratic model) and the Hessian is given by

∇f(x)ij =
∂2f(x)

∂xi∂xj
(7)

Thus, to guarantee strict convexity, the square fitting qm parameter is set to be always greater than zero.
Equation (4) provides a relation between the input and output power for the battery component as a
function of SoC. SoC is a state of the subsystem and, therefore, this relation cannot be convex. However,
the impact of state variable on the model is not significant.

2.2 Topology library
In the current version of the tool twelve hybrid-electric combinations are implemented. These cover se-
ries, and post-transmission (P3) and pre-transmission (P2) parallel topologies. For each of these topolo-
gies the number of electric motors present can range from one to four. Using two or more electric
machines in a parallel configuration essentially results in a series-parallel topology.

2.3 User input
The user is requested to specify a range of settings and requirements. These include basic vehicle pa-
rameters such as glider mass, resistance coefficients and etc. The driving profile is selected based on
a driving cycle (15 of the most widely used cycles available) and number of repetitions of the chosen
cycle. Additionally, performance requirements such as top speed and maximum gradient from standstill
are available as settings. Most importantly, the user must specify the objective for the optimization.
Currently a selection of the following objectives is available: fuel consumption per 100 km, energy con-
sumption per 100 km and energy consumption per ton mass. All of these settings and requirements are
loaded through a Graphical User Interface (GUI) depicted in Fig. 2.

Figure 2: TOPDSIGN tool GUI.
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2.4 Optimization framework
To find the optimal solution to the given problem the powertrain and the control strategies must be
designed jointly [11]. Therefore, this becomes a co-design on a multi-level optimization problem. Fig. 3
depicts the developed optimization framework and its layers. These layers and the methodology used in
them are discussed in this subsection.

Outer loop
Plant design - Topology selection 

Intermediate loop
Plant design - Component sizing 

Inner loop
Control

EM
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TS
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Figure 3: Optimization framework (FT - fuel tank, ICE - internal combustion engine, TR - transmission, BT -
battery, EM - electric motor, TS - torque split, VB - vehicle body).

2.4.1 Outer loop - Topology selection
The task of the outer loop is to create the plant design in terms of a topology. As already mentioned there
are twelve possibilities for a topology. Thus, the need for a sophisticated optimization algorithm is omit-
ted on that level of the optimization framework. Instead, a loop with parallel execution is implemented
to cover all possible topologies.

2.4.2 Intermediate loop - Component sizing
The intermediate loop is responsible for picking the optimal sizing of all powertrain components, which
results in an enormous design space. To tackle that, the Surrogate Optimization (SO) algorithm is intro-
duced. Essentially, a surrogate is a model that approximates a function. When searching for the minimum
of that function, the surrogate can be evaluated over a huge amount of points and the best value can be
taken as an approximation to the minimizer of the function. Therefore, SO is a particularly good solution
for objective functions that take a long time to evaluate, like in this case (running a powertrain model
over a driving cycle).

The MATLAB solver surrogateopt searches for the global minimum of a real-valued objective function in
multiple dimensions, subject to certain bounds [12]. The whole process consists of two phases: construct
the surrogate model of the vehicle over the driving cycle and search for the minimum. Thus, a trade-off
is posed here between accuracy and speed. This framework is designed to provide initial design advice
but at the same time the goal is to obtain results which are as close as possible to the global minimum.

2.4.3 Inner loop - Control design
The energy management strategy is based on the Modular Energy Management Strategy (MEMS) and
controls the following aspects: torque split (for parallel hybrids or series with two or more motors),
engine-generator setup control (for series hybrids) and gearshift strategy. MEMS applies dual decom-
position to the ECMS optimal control problem, which means that the optimal control problem is split
into several smaller problems, each corresponding to a subsystem, part of the topology (e.g., electric
machine, combustion engine, etc.). The multi-modal powertrain is modelled using power flows in the
system. By doing so, MEMS becomes scaleable as it can be applied to every powertrain configuration in
which the power balances at the nodes are known.

An essential modification made to MEMS compared to ECMS, is that in MEMS the minimization ob-
jective is the the sum of the energy losses of each component [4]. The expression then becomes rather
favorable for the decomposition because the objective is formulated as function of the input (um) and
output (ym) powers of each subsystem, rather than only as a function of the combustion engine output
(yice)

min ṁf (yice)− λĖs ⇔ min
∑
m∈M

um − ym − λĖs, (8)
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where M ∈ {ice, em1, em2, em3, em4, eg, hvb, bra}, ṁf is the fuel mass flow, λ is the equivalent cost
factor and Ės is the battery energy consumption. Using the redefined Equation (8) the Lagrange dual
function is introduced

min
∑
m∈M

um − ym − λĖs + µ⃗

(
v⃗T +

∑
m∈M

Amum +Bmym

)
, (9)

where µ⃗ is the dual variables vector (one dual variable for each subsystem/component), v⃗ is a vector
with the system’s exogenous inputs and the matrices Am and Bm are indicating how the components are
connected within the powertrain. The MEMS algorithm is given in Algorithm 1. This loop essentially
runs until equilibrium is reached, at which the expression in the brackets of Equation (9) goes to zero.
Global optimum is guaranteed in all the cases in which the algorithm converges because the powertrain
components are represented with convex models.

Algorithm 1 MEMS algorithm

while v⃗ +
∑

m∈M Amum +Bmym ̸= 0 do
for all subsystems do

if subsystem is high-voltage battery then
Solve min um − ym + µ⃗Amum + µ⃗Bmym − λĖs

else
Solve min um − ym + µ⃗Amum + µ⃗Bmym

end if
Update dual variable

end for
end while

MEMS is used to control the power distribution to each mover through torque split. Therefore, the
wheel speed is coupled to the speed of the movers. Additionally, MEMS is applied to two mixed-integer
problems - generator-engine on/off and gearshift. The gearshift strategy is efficiency based, meaning
that at each instance of the simulation it is calculated which gears are viable and the most efficient one is
picked. This process is also executed during regenerative braking in order to recuperate as much energy
as possible. Additionally, new gearshift is not allowed for three seconds after a gearshift has occurred,
unless it is necessary to keep the operation point within the movers limits. The generator-engine control
is realized by precomputing the combined maximum efficiency point of the setup and letting MEMS
decide when to turn the setup on/off depending on the state of charge of the battery.

2.5 Closed-loop automatic testing
To test each of the possible plant and control designs an automated methodology for closed-loop testing
has been developed. Essentially, MATLAB scripts and functions generate a Simulink model based on
the topology and components settings. This Simulink model uses the publicly-available QSS modelling
library [13] to construct a certain vehicle powertrain. The QSS library relies on the quasi-static repre-
sentation of the system, meaning that the physical causality of the model is revered (more on quasi-static
modeling in [14]). Fig. 4 illustrates such a representation of a pre-transmission parallel hybrid. However,
to accommodate this approach, the QSS library underwent several changes.
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Figure 4: Parallel HEV causality representation in quasi-static modeling (DC - driving cycle, v - velocity, a -
acceleration, T - torque, w - rotational speed, P - power).

EVS35 International Electric Vehicle Symposium and Exhibition 6



3 Results
To validate the developed methodology two vehicle types are optimized and the results are presented in
this section. The two vehicle types are compact and full-size passenger cars with glider (without pow-
ertrain) masses of 750 kg and 1250 kg, respectively. Additional basic parameters of the two vehicles are
listed in Table 1. Both designs are optimized for energy consumption over 5 repetitions of the WLTP
Class 3 cycle (depicted in Fig. 5), resulting in total driving time of 2.5 h or distance of 116 km. Addi-
tionally, a PI feedback controller ensuring charge-sustaining (CS) behaviour over the cycle is introduced
in order to compare the fuel consumption of the hybrids against conventional ICE-driven vehicles.

Table 1: Compact and full-size vehicles parameters.

Compact Full-size
Air drag coefficient (Af · cd) 0.6 m2 0.7 m2

Rolling resistance coefficient (cr) 0.012 0.013
Total wheel radius (wr) 0.3 m 0.36 m
Glider mass (mv0) 750 kg 1250 kg
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Figure 5: WLTP Class 3 driving cycle.
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Figure 6: SoC of the two HEVs over the test cycle.

The parallel P2 (pre-transmission) topology results in the lowest energy consumption for the compact
car, while for the full-size the parallel P3 (post-transmission) configuration delivers the best results. Op-
timized component sizes and fuel consumption of the two vehicle types are listed in Table 2 and battery
SoC’s over the cycle are depicted in Fig. 6. The compact P2 hybrid opts for engine and motor size with
similar operation range as the two components are coupled via the transmission and operate at the same
shaft speed. Thus, this is expected and the electrification level sits in the middle between an ICE-driven
and electric vehicle. On the other side, the full-size P3 hybrid keeps the same motor size as the compact
P2 but selects a rather larger engine. In post-transmission hybrids usually the engine is downsized by the
transmission but the motor is larger as it needs a wider operational range. The reason for the opposite
behaviour in this case is the CS strategy.

Table 2: Vehicles optimization results.

Compact (P2) Full-size (P3)
Combustion engine size [kW] 35 81.2
Electrical motor size [kW] 35 34.6
Battery size [kWh] 6.3 12.3
Fuel consumption [l/100km] 3.19 4.37
Vehicle mass [kg] 1024 1747

To understand better how the two hybrids operate Fig. 7 depicts the relative amount of time in percent-
ages which each vehicle spends in the diffident operation modes. The compact P2 hybrid charges for a
larger proportion of the time compared to the full-size P3 and the main reason for that is the larger engine
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of the full-size. This larger engine allows for charging at higher powers while operating in an efficient
region, and thus, requires less time to provide the same amount of energy. Both hybrids spend less than
1 % of the cycle in electric only mode. Essentially, when a CS strategy is imposed the vehicle would
try to charge the battery or/and operate in hybrid mode as much as possible. However, that is highly
dependent on the design of the PI controller imposing the CS strategy.
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Figure 7: Mode distribution for the optimized compact and full-size HEVs.

4 Discussion

4.1 Fuel consumption comparison
To put the optimization results into context, the fuel consumption of the two vehicles is compared with
vehicles from the same types. To do so, the best sold ICE vehicles in Europe for 2021 with the same total
masses as the two optimized HEV designs are taken (data from [15]). For each of these the most efficient
model configuration has been picked. Moreover, for the full-size case the average consumption in CS
mode of three other HEVs is considered as well (data from [16]). Fig. 8 depicts the fuel consumption of
all the vehicles over the WLTP Class 3 cycle. The two designs for this study score much better compared
to the conventional vehicles and the full-size shows a 17 % decrease in consumption compared to other
HEVs.
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Figure 8: Fuel consumption (petrol) of different vehicles over the WLTP Class 3 cycle.
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It is apparent that HEVs have a higher initial cost than conventional vehicles and this study did not
optimize for total cost of ownership. However, doing a quick calculation on running costs using petrol
price of 2.1 C/l (average for Netherlands as per 19.04.2022) at 13000 km/year, reveals yearly savings of
600 C if you use the optimized compact HEV rather than the Renault Clio.

4.2 Quasi-static vs convex models
As this is a study purely based on simulations, it is essential how the components are modelled. QSS rep-
resents the components in quasi-static (backwards) fashion, meaning their physical causality is reversed.
This allows for significant reduction in computational time (compared to dynamic models) which comes
in handy when solving sizeable optimization problems, like in this study. In general, backwards mod-
elling is well suited for supervisory control systems that optimize power flows [14]. However, this paper
aims at delivering the globally optimal solution when it comes to the power management of the system.
As already discussed, MEMS requires convex models of the components to guarantee global optimality,
and thus, the quasi-static models are converted towards such suitable for optimal control using quadratic
fitting (more on that in Sub-subsection 2.1.5). This conversion, in some cases, requires approximations
which distance the model from reality, and thus, could alter the performance of the powertrain. The
components library has been checked for such big approximations and such have been excluded, but
still some inaccuracies between model and fit exist. In other cases (like the battery) the quadratic fitting
includes dependency on state variables in the model, and thus, the resulting model could not be convex.
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Figure 9: Model and quadratic fit of an engine.
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Figure 10: Model and quadratic fit of a motor.

Fig. 9 & 10 depict the the relations between input (chemical or electrical) and output (mechanical) power
for an engine and motor, where the lines are the speed-dependent fits. Note that the quadratic fits could
be improved, but to obtain convex models the quadratic fitting parameters must always be non-negative.
These residuals in the fits influence the simulations and the optimization framework: at certain instances
the energy management strategy (using the fits/convex models) could pick an operation point for the
engine, motor or generator which is outside the operation region according to the quasi-static model and
would interrupt the simulation. Therefore, it is essential for this framework that the convex models of
the components are as accurate as possible.

5 Conclusion
This paper aimed at designing an automated tool which can provide initial advise on how to design and
control a powertrain topology for certain use profile. The developed tool, named TOPDSIGN, provides
a solution for the joint design problem by incorporating MEMS in its core. All plant and control designs
are tested using an automated closed-loop testing methodology, which creates Simulink models based on
the modified QSS modelling library.

Two vehicle types have been optimized over the main test cycle for Europe while imposing CS strategy.
The pre-transmission parallel topology results in the lowest energy consumption for the compact HEV,
while the post-transmission parallel configuration delivers the best results for the full-size car. Compo-
nent sizing (especially for the full-size case) and mode distribution indicate that the design is heavily
dependant on the battery management strategy (and how it is imposed). The fuel consumption of the two
optimized HEVs is considerably lower when compared to the most popular ICE-driven vehicles from
the same class on the European market. Additionally, the full-size car achieves 17 % savings in fuel
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consumption against other HEVs.

Convexifying component models is pivotal for the optimal control energy management strategy and
this paper has demonstrated a method for converting quasi-static models into convex. However, as the
powertrain test framework uses quasi-static models during simulations while the energy management
strategy relies on the convex representations, it is very important that the mismatch between the two is
minimal.
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