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This paper presents a procedure for determining the initial design parameters using analytical calculation
method for a PMSM (Permanent magnet synchronous motors), followed by developing a machine
learning algorithm with the available benchmarking data to determine the motor design parameters. A
comparison study with the results obtained from Analytical calculation and machine learning algorithm
carried out in determining the initial sizing parameters, also the severity of impact is accessed

qualitatively and results are presented.
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1 Abstract

The global attention towards Electric Vehicles is growing tremendously, mainly because of environmental
issues in recent years. There has been a significant increase in the development of hybrid and pure electric
vehicles as they are considered as an effective solution for reducing the carbon footprint. There is a lot of
research happening, especially in the design of high performance e-motors for Electric Powertrain
applications.

In this paper, we have presented an ANN algorithm design approach, which will help in saving the time
needed for theoretical design, and with an optimum design solution, can reduce the time and iterations of
FEA required while designing an e-motor.

In this paper, the focus is on the PMSM due to its higher efficiency and more advantageous torque
characteristics compared to other types of motors.

2 Introduction

In current scenario, performance improvements such as reducing the overall time and enhancing the
efficiency of the electric motor are one of the most important challenges. There are many studies conducted
and documented on the sizing of the electric motor to reduce the losses and increase the torque density of the
machine.

In general, an electric machine designer translate a set of design specifications to design choices and ensuring
that the final product meets the requirements. To support the design decision, analysis and modelling of the
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machine is required and that depends on the level of details that is targeted based on that approach depend,
either analytical equations or detailed 2D or 3D finite element analysis tools can be used.

Data analytics approach involving the analysis of data to draw a conclusion is gaining traction is various
domains. Though a data analytic approach involves big data to predict the result closest to the actual, a trial
is carried out in this paper with the available data and discussed in detail on the step by step process on
determining the major electric motor design parameters using the Machine-learning (ML) algorithm (ANN
algorithm) using python software.

The result obtained, can then be used with any FEA tool to improve the accuracy and efficiency of the final
design. Using this data - based approach reduces the time for any FEA iterative design process, and enhances
the accuracy of the design in a shorter time span.

3 Sizing of Permanent Magnet Synchronous Motor

The design of electric machine largely an iterative process implying that parts of the design have to be
repeated in order to obtain the desired solution. In most of the cases, the limitation in terms of size is
determined from the available packaging volume for any BEV or PHEV, the electric machine designer has
to provide a solution that meets the speed, torque and power requirement and target for high Torque to volume
ratio as a primary objective.

In the Theoretical Design approach, we first determine the stator and rotor geometry based on key
assumptions. Then we calculate the required electrical loading (E) and magnetic loading (M) followed by
calculating the Back EMF. The calculations are concluded with the Torque per rotor volume (TRV).

3.1 Determining the stator and rotor geometry

Figure 1. PMSM Geometry

d=Sor == Sir (1)
Sir = Ror + Gy 2
SNieetn = SNgior 3
SAtooth =d x b “4)
SAs0r =A—B ®)
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Tablel: Nomenclature for Motor Geometry. (Refer Fig. 1)

S,r | Stator outer radius | a | Slot width M,, Magnet width SAgo: | Stator slot area
Si» | Stator inner radius | b | Lamination width M, Magnet length SNieetrn | Stator no of teeth
R, | Rotor outer radius | ¢ | Yoke width Gqir | Air gap SNgio¢ | Stator no of slot
R; | Rotor inner radius | d | Slot height A Magnet area SAyoke | Stator yoke area
L. | Stack length N, | No of pole RAgtee; | Rotor steel area | SAg,.; | Stator steel area
SAslot — n(Sir+d)*~ ”S;r:l_ SNteethXS tooth (6)
slot
SAsteer = B+ SAyoke @)
The overall magnetarea- Ay, = M, x M; x N, ®)

The overall rotor steel area assuming that the impact of flux barriers negligible and no further holes in the
rotor Rgg = TRy > — TRy — Ap &)

Considering the densities of the material used such as electrical steel (7650 kg/m3), copper (8960 kg/m3)
and NdFeB magnet (7400 kg/m3), the rotor inertia as below

— L
Rotor inertia I, = wx (Ror* — Ry™) (10)

3.2 Electrical loading (E) and Magnetic loading (M)

The electrical loading E in general defined as -

__Total amphere—conducto 2 x m x Tppx I (10)

Airgap circumference T X 2%Rop

m- No of phases, Ty, - no of turns in series per phase, I — RMS value of the phase current

This by assuming the air gap is small and as a result outer rotor diameter and the inner rotor diameter are
equal.

The electrical loading is limited by factors such as the stator slot depth, the achievable packing factor of
copper in the stator slots (or else known as slot fill factor), and the allowable copper current density based on
the maximum allowable temperature raise. Typical values for the electrical loading are in the region f 15-
45(kA/m), for continuous operation.

The electrical loading is related to current density (J) in the conductors and are shown as

] =

A X Psior (11)
SSff % Ssiot
Typical values for the maximum Fg,, are in the range od 0.4-0.5 and may vary with the chosen winding
distribution. Additionally as the voltage rating of the machine increase, lower values for Fg,; should be
encountered as, more space required for the insulation. These values might seems small to what one would
expect, but indicate the big part that insulation and air occupy in a slot. Higher values can be achieved with
the rectangular slots and use of rectangular copper bars, which on the other hand have the drawback of high
copper losses at high frequencies, caused by the skin effect

The magnetic loading is the average flux density over the rotor surface due to the permanent magnets. It can
be associated with the average flux per pole through with the assumption of sinusoidal flux density
distribution.

TTXDxLgtg (12)

¢=B x 2
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¢ —Average flux per pole with the assumption of a sinusoidal flux density distribution
p — Number of pole pairs

The magnetic loading is usually limited by saturation of the stator teeth of the machine and hence by the
saturation flux density of the stator iron. The ratio of stator teeth width to the tooth pitch defines the maximum
allowed value for the magnetic loading assuming sine-distributed flux.

20

B = X Bt_peak (12)

s
o - Ratio of stator teeth width to the tooth pitch

Typical values of magnetic loading are in region of 0.4 — 0.7T, while in special occasions where the high
torque density is required; it may reach the value of greater than or equal to 1T. High values of magnetic
loading are required to achieve high torque and power performance.

3.3 Generated EMF (back-EMF) per phase (B,;,y)

The generated EMF (or else known as back — EMF) per phase € is associated with B and its RMS value is
given as

_ \/ankalephX(pxpx m 2 kw1 XTphXMXDX stkXfe XK1 XTphXMXDXLstXwWm

E = \J2xnxk,, XTopxpxf, = N =5% > = S (13)
fo - Fundamental electrical frequency
W, - Mechanical rotational speed in rad/sec (anxfe /p)

ky1 - Fundamental harmonic winding factor typical in the region of 0.85 to 0.95

Below equation denotes the flux density at the air gap as created from the permanent magnet
Sy bl (14)

B, - Intrinsic flux density, S,- Air gap area per pole considering TxDX Lt

14

Sm - Magnet surface facing the air gap consideringLg  xw,,, 1, - Magnet relative coil permeability
3.4 Torque per rotor volume calculation

The torque per unit rotor volume (TRV) describes the amount of torque available from the given rotor volume.
As such, it is the common measure for comparing the motors and for initial motor sizing for a given
application. Under the assumptions that the power factor is unity and all the available power at the air gap is
converter into mechanical power, the generated torque on the shaft of the electrical machine can be estimated
as

Py = mxBomsxl (Watt) (15)

Assuming that the power factor is unity and all the available power at the air gap F, is converter into
mechanical power and the generated torque on the shaft of the electric machine T, can be estimated using.
The assumption is because of desire to minimize the volt-ampere rating of the inverter.

T, = mEl _ TXmxKy: XTpnX2XRor Mxl = 2 XK1 X(2%Ror) XLtk xMxE (16)
Wm 2V2 /2
Te xky, . . xD*xLs
TRV = = %xMxE (Considering V. = %) (17)

Thus, the torque is directly proportional to square of diameter and length of the stack. With the help of similar,
various empirical relations including the different loss calculations, the sizing of the electric machine is
calculated
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4 Preliminary Motor Design using Artificial Neural Networks

4.1 Dataset for Motor Design Parameters

To build a Machine Learning model, the primary requirement is clean data from reputed sources. We have
collected most of the data from A2Macl Automotive Benchmarking website, and created a dataset by
considering the key parameters for an E-Motor design. We obtained data for the following Traction Motor
parameters for an Permanent Magnet Synchronous Motor with rotor having Double V Shape slots—

Table 2. Parameters considered while data collection for PMSM

Motor Parameters Stator Parameters Rotor Parameters
Motor Type — PMSM Stator Outer Diameter (SD1) Rotor Outer Diameter (RD1)
Peak Power (kW) (mm) (mm)

Maximum Torque (N-m)
Continuous Power (kW)
Continuous Torque (Nm)
Battery Voltage (Volts)

Stator Winding — Hairpin
Winding or Round Copper Wire
Winding

Stator Inner Diameter (SD2)
(mm)

Stack Height (mm)

No. of Stator Slots

Depth of Stator Slot (DSS) (mm)

Width of Stator Slot Opening
(WSSO) (mm)

Width of Stator Slot Bottom
(WSSB) (mm)

Core Back Width (CBW) (mm)
Air Gap Length (mm)

Rotor Shaft Diameter (RD2)
(mm)

No. of Rotor Poles

No. of Rotor Slots

Magnet Width (mm)
Magnet Thickness (mm)
Magnet Angle (deg)

Magnet Position from shaft
centre (mm)

No of statar slots

Widih of stator
slot Battorm

Width of stator
slot opening

e < Stator 0D

@ Stator ID

~— & Rotor OD

~
~
~— @ Rotor ID

Figure 2. Nomenclature of Stator and Rotor Parameters considered for ANN Model
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Peak Power vs Stator Outer Diameter Peak Power vs Stator Inner Diameter Peak Power vs Stack Height
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Figure 3. a) Peak Power vs Stator OD, b) Peak Power vs Stator ID, ¢) Peak Power vs Stack Height

For creating the ANN Model, we have used open source software — Jupyter Notebook, and written the code
in Python.

Data Pre-Processing was carried out before creating the model, like converting all numeric data into uniform
data type, Data Cleaning to fill in missing data, Normalization to scale the data for more accurate comparison,
Feature Selection for extracting relevant and important variables for analysis. After pre-processing, the clean
data set was divided into training, validation and testing data to be fed as input to the ANN Model

As per the proposed approach, we created two different ANN Models for prediction of Stator and Rotor
design parameters.

4.2 Neural Network Schematic

The first ANN Model focuses on predicting the main dimensions of the motor. The below schematic depicts
the parameters considered for the first ANN Model.

Rated Power (kW) 1
g Stator Outside Diameter {SD1) (mm)

Maximum torque (Nm) 2
10 Stator Inside Diameter (SD2) (mm)

3
’I' Continuous Power (kw) = 3 e :v‘:} = g
0 ZRSPERE . =
E N2 .:"0.\0 > o stack Height (mm) E
7] Continuous Torque (Nm) = 4 —
E | 2
g Rotor Outside Diameter (RD1) (mm) 8
g Rated speed ffpm] 5 12 otor Uutsiae Diameter mm %
= L7 S TA +
a /.;‘z',, L i‘“é‘EQ AL ®
<2 W

& Battery Voltage (Volts) 6 4’152{1A = —— 7 }" ¢ 2 “;,- 13 Rotor Shaft Diameter (RD2) (mm) ,‘_‘.

et 7 14 Gap Length (mm)

Stator Winding 8 —

Input Layer Hidden Layers Output Layer

Figure 4. Schematic for ANN Model 1

The second ANN Model uses the output of the first ANN Model as an input, and predicts the below
mentioned stator and rotor lamination design parameters as output.
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[W1]exs [W2]oxe
Stator Outside Diameter
(SD1) (mm) S
Stator Inside Diameter
(SD2) (mm) 17  No. of Stator Slots
RN
X s %
& Stack Height (mm) X < %2’:‘ 1 ‘r > Ay 1g  Depth of Stator Slot
! RIS, (055} (mrm) o
n 2 0-'«.&‘ 4
] s ] ©
w Rotor Outside Diameter < 19 Width of Stator Slot Opening g
£ (RD1) {mm) (WSS0) (mm) -
® - ]
& _ B
a Rotor Shaft Diameter GOl idth of Stator St Bottom 3
5 (RD2) {mm) (WSSB) (mm) 2
o ©
c =
= Core Back Width s
Gap L h 21
ap Length (mm) (CBW) (mm) N
Stator Winding 23 No. of Rotor Slots
No. of Poles -

Input Layer Hidden Layers Output Layer

Figure 5. Schematic for ANN Model 2

4.3 Hyper parameters

Table 3 summarises the hyper-parameters used to create the ANN Models 1 and 2, which determine the
Neural Network structure and how the network is trained.

Table 3. Hyper-parameters for ANN Model 1 and ANN Model 2

Hyper parameters ANN Model 1 ANN Model 2
Input Layer Neurons 8 7
Output Layer Neurons 6 6
Hidden Layers 3 3
Hidden Layers Neurons 10 10
Hidden Layer Activation Rectified Linear Activation Rectified Linear Activation
Function Unit (RELU) Unit (RELU)
Output Layer Activation Linear Function Linear Function
Function
Loss Function Mean Squared Error Mean Squared Error
Optimizer Adaptive Moment Estimation ~ Adaptive Moment Estimation
(ADAM) (ADAM)
Batch Size 10 10
Epochs 10 10

4.4 Python Code for ANN Model

We have chosen python language for building the ANN Model, to utilize the ease with which neural networks
can be created with the use of TensorFlow. Figure 5 and Figure 6 shows the python code for the ANN Model
1 and 2.
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In Machine Learning context, accuracy is the ratio of the number of correctly predicted samples to the total
number of samples. The training accuracy and validation accuracy for both the models is increasing, however
overall value can be improved with more data. We can have a more mature ANN model with greater
confidence and prediction accuracy after creating a larger data set.

ANN Model 1

In [21]: M input_siz
output_s
hidden_layer_:

model = tf.keras.Sequential([
tf.keras.layers.Dense(input_size, input shape=(8,)),
tf.keras.layers.Dense(hidden layer size, activ
tf.keras. 1ayers.Dense(hidden_layer_size, activation:
+tf.keras.layers.Dense(hidden_layer size, activation
+tf.keras.layers.Dense(output_size, activation='1i

i}

model.conpile(optimizer="adam’, loss='mean_squared_error', metrics=[‘accuracy'l)

batch_size = 18
max_epochs = 18
early_stopping-tf.keras.callbacks.EarlyStopping(patience=1)

model.fit(x_train_tensor,
y_train_tensor,
batch_size = batch_size,
epochs = max_epochs,
validation data = (x_validation tensor,y validation_tensor),
verbose = 2)

Epoch 1718

&/6 - 25 - loss: 1.3839 - accuracy: @.e769 - val loss: 1.2033 - val_accuracy: @.2388 - 2s/epoch - 274ms/step
Epoch 2/18

6/6 - @5 - loss: 1.2317 - accuracy: €.8577 - val_loss: 1.1968 - val_accuracy: @.2388 - 33ms/epoch - l4ms/step
Epoch 3/18

&/6 - @5 - loss: 1.189%0 - accuracy: €.8262 - val lo
Epoch 4/18

6/6 - 85 - loss: 1.1541 - accuracy: ©.8962 - val_loss: 1.188@ - val_accuracy: @.3877 - S3ms/epoch - lems/step
Epoch 5/18
66 - @s -
Epoch &/18
6/6 - 5 - loss: 1.1183 - accuracy: €.1154 - val_lo:
Epoch 7/18

1.1918 - val_accuracy: ©.3e77 - gems/epoch - 1sms/step

! 1.1254 - accuracy! @.1154 - val loss: 1.1856 - val _accuracy: ©.2388 - 83ms/epoch - 14ms/step

1.1829 - val_accuracy: @.23e8 - sams/epoch - ldms/step
! 1.1@53 - accuracy: ©.1538 - val_loss: 1.1812 - val accuracy: ©.3e77 - ssms/epoch - 1sms/step

: 1.8961 - accuracy: ©.1731 - val_loss: 1.1792 - val_accuracy: 8.3846 - 82ms/epoch - ld4ms/step

6/6 - @5 - loss: 1.8875 - accuracy: €.1923 - val _loss: 1.1779 - val_accuracy: @.3846 - sems/epoch - 1lems/step
6/6 - 85 - loss: 1.8812 - accuracy: ©.2388 - val_loss: 1.1756 - val_accuracy: ©.2388 - 87ms/epoch - ldms/step

Qut[31]: ckeras.callbacks.History at @xl8clebfldce>

Figure 6. Code for ANN Model 1

ANN Model 2

. A input_size = 9
In[18): M output_size = 6
hidden_layer_s

model = tf.keras.Sequential([

tf.keras.layers.Dense(input_size, input_shape=
tf.keras.layers.Dense(hidden_layer_size, act
tf.keras.layers.Dense(hidden_layer_size, activ
tf.keras.layers.Dense(hidden_layer size, activ
tf.keras.layers.Dense(output_: activatior
n

9,)),

model.compile(optimizer="adan’, loss='mean_squared_error’, metrics['accuracy'])

batch_size - 1@
max_epochs = 1@
early_stopping=tf.keras.callbacks.EarlyStopping (patience=1)

model.fit(x_train,
y_train,

batch_s.

= batch_size,

epochs = max_epochs,

validation_data = {x_validation,y_validation},

verbose = 2)
Epoch 1/18
6/6 - 1s - loss: 1.8253 - accuracy: @.8962 - val_loss: 1.851@ - val_accuracy - 1s/epoch - 1%8ms/step
Epoch 2/18

6/6 - 85 - 1loss: 1.8136 - accuracy: 8.1346 - val_loss: 1.8429 - val_accuracy: 8.3877 - e3ms/epoch - 1ims/step
Epoch 3/18
6/6 - @s - loss: 1.8871 - accuracy: 8.1154 - val_loss: 1.8369 - val_accuracy: €.3e77 - 54ms/epoch - 9ms/step
Epoch 4/18
6/6 - @s - loss: 1.e815 - accuracy: @.1325 - val_loss: 1.8255 - val_accuracy: 8.3877 - S5ms/epoch - 9ms/step

Epoch 5/1@
6/6 - @5 - loss: @.9955 - accuracy: 8.1346 - val_loss: 1.8224 - val_accuracy: 8.1538 - é2ms/epoch - leéms/step
Epoch &/18
6/6 - @s - loss: @.99@1 - accuracy: 8.1346 - val_loss: 1.8154 - val_accuracy: €.1538 - 5&ms/epoch - lems/step
Epoch 7/18

6/6 - 85 - loss: ©.985@ - accuracy: 8.8962 - val_loss: 1.8e91 - val_accuracy: 8.1538 - S7ms/epoch - Sms/step
Epoch 8/18
6/6 - @5 - loss: @.9808 - accuracy: 8.8962 - val_loss: 1.8829 - val_accuracy: €.1538 - 5&ms/epoch - lems/step
Epoch 9/18
6/6 - @85 - loss: ©.9774 - accuracy: 8.8769 - val_loss: 8.9957 - val_accuracy: 8.1538 - eems/epoch - 1ims/step
Epoch 18/18
6/6 - 85 - loss: ©.9733 - accuracy: ©.8962 - val_loss: ©.9892 - val _accuracy: €.1538 - sems/epoch - Sms/step

Figure 7. Code for ANN Model 2
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5 Results

Peak Power vs Target Stator OD and Predicted Stator OD Peak Power vs Target Stator ID and Predicted Stator ID 2 Peak Power vs Target Stack Height and Predicted Stack Height
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Figure 8. a) Peak Power vs Target and Predicted Stator OD, b) Peak Power vs Target and Predicted Stator ID,
c) Peak Power vs Target and Predicted Stack Height
8]:
StatorOD  Stator ID ek RotorOD  Rotor Shaft GapLength StatorOD  Stator ID Stack RotorOD Rotorshan  G2P
target target g target Dia target target pred pred Height pred pred Dia pred gt
target pred
0 200 13200 14000 13000 4500 100 21795 14584 14680 14360 5490 115
1 2300 15400 16000 15200 6500 100 21665 14579 664 18410 5529 115
2 21800 14000 1800 13800 50.00 100 21290 14411 14460 14531 %43 117
3 2000 18500 17000 16100 6300 200 21379 14323 14431 14549 550 118
4 2300 16300 14000 16000 58.00 150 20755 14646 14728 14368 55.28 115
5 23400 15200 13800 15000 47.00 100 21972 14614 261 14392 5472 118
& 25400 15800 17500 15600 6300 100 20598 15682 901 14162 5707 121
7 21800 14400 14000 14200 4700 100 21760 14591 14664 14370 5505 115
8 20000 13500 17500 13300 56.00 100 1821 1583 16421 14558 5616 105
9 2500 15200 18500 15000 47.00 100 22013 14806 207 14283 5451 147
10 21600 12300 100 12100 4500 100 21754 14489 14628 14398 55.05 115
1 20500 13400 17800 13200 60.00 100 21597 14480 654 14531 5543 115
12 20500 13500 18000 13300 50.00 100 20697 15354 15393 14314 5565 11
15 20200 14100 12500 13900 6300 100 21608 14613 14595 14380 532 115
14 20000 13500 9200 13200 5500 150 19924 15553 16134 14574 5755 104
15 20000 13500 17500 13300 56.00 100 19804 15848 16484 14573 5629 104
16 24200 16300 1000 16000 57.00 150 21727 14581 1729 14394 5498 114
Figure 9. Output of ANN Model 1 based on testing data
out[27]:
No. of Depth of Core Back Mo. of No. of Depth of No. of
Stator Slafs  Stator Slat  hoi0  W3SE Width Rotor Slots  Stator Slots  Stator Slot  Wou0  WS3B - CoteBack gy g
target target Tge =g target target prad prad pre P P pred
0 48 250 25 a0 25 18 8 22571082 2218803 5234880  24.0B087D 24
1 80 270 25 73 270 it 4 22380831 2235023 5280814 24000308 2
z 2 240 10 a1 280 18 4 2206216 2154811 4319057 24220361 2
3 4 20 25 52 185 2 4 22 662681 4316354 24418706 2
4 43 3fo 30 az 175 32 43 22280301 2240445 5324045 24 080383 32
3 54 270 27 60 275 32 43 22442272 2248318 5208482 24 016680 32
] 4 0.0 20 72 120 2 ] 22380508 2244270 5318882 24401751 2
7 48 200 20 45 270 2 2 22400064 2239980 5276500  24.030455 2
8 48 18.0 20 42 215 24 . 22462112 2224080 5263085  24.105058 2
] 54 2.0 25 a2 25 2 4 22448080 2248550 5207807 24012821 2
10 4 20 15 85 18 54 22533131 Z1S0G13 5204741 24215475 2
" 4 .0 20 87 25 2 4 22417028 2222006 5260203 24137131 2
12 43 200 20 45 250 24 43 22504778 2216781 5245234 24 110587 24
13 72 120 10 19 275 24 43 22862108 2141027 4756421 24207523 24
1 4 20 20 51 215 18 ] 22000074 2155841 4842000 24233200 N
15 48 120 20 4z 25 2 2 22462112 2204880 5263035  24.105060 2
16 48 350 20 78 20 24 . 22350100 2247848 5312441 24050420 22
Figure 10. Output of ANN Model 2 based on testing data
m - - ; = o
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Table 4.a) Result Table for ANN Model 1

Sr. Stator Stator Accuracy  Stator Stator Accuracy Stack Stack Accuracy
No. OD OD (%) ID ID (%) Height Height (%)
Target Predicted Target  Predicted Target Predicted
(mm) (mm) (mm) (mm) (mm) (mm)
1. 235 217 92.2 154 146 94.7 160 147 91.6
2. 235 218 92.6 163 146 90 140 147 94.8
3. 234 220 93.9 152 146 96.1 135 143 94.4
4. 218 218 100 144 146 98.7 140 147 95.3
5. 200 198 99.1 135 158 83 175 164 93.8
6. 225 220 97.8 152 148 97.4 135 142 94.8
7. 205 216 94.6 134 145 91.9 175 147 83.7
8. 205 207 99 135 154 86.2 180 154 85.5
9. 200 198 99 135 158 82.6 175 165 94.2
10. 242 217 89.8 163 146 89.5 140 147 94.8
Table 4.b) Result Table for ANN Model 1
Sr. Rotor Rotor Accuracy Rotor Rotor Accuracy Gap Gap Accuracy
No. OD OD (%) ID Target ID (%) Length Length (%)
Target Predicted (mm) Predicted Target Predicted
(mm) (mm) (mm) (mm) (mm)
1. 152 144 94.8 45 55 78.0 1 1.15 84.9
2. 160 144 89.8 47 55 84.0 1.5 1.15 76.4
3. 150 144 95.9 65 55 85.1 1 1.18 82.4
4. 142 144 98.8 63 55 87.8 1 1.15 84.9
5. 133 146 90.5 50 56 88.7 1 1.05 95.2
6. 150 143 95.2 63 57 89.7 1 1.17 83.4
7. 132 145 89.9 60 55 92.4 1 1.15 84.5
8. 133 143 92.4 58 55 95.3 1 1.1 88.7
9. 139 144 96.5 55 58 95.4 1 1.15 84.8
10. 133 146 90.4 56 58 96.2 1 1.04 95.5
35" International Electric Vehicle Symposium and Exhibition 10
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Table 1.a) Result Table for ANN Model 2

Sr. Stator Stator Width of  Width of Accuracy Width of = Width of Accuracy

No. Slots Slots Stator Stator % Stator Stator %

Target Predicted Slot Slot Slot Slot

Opening  Opening Bottom Bottom
Target Predicted Target Predicted
(mm) (mm) (mm) (mm)
1. 48 48 2.5 2.22 88.7 6 5.23 87.2
2. 54 48 2.7 2.25 83.3 6 5.3 88.3
3. 48 48 3 2.24 75 7.2 5.32 74
4. 48 48 2 2.24 88.1 4.5 5.28 83
3. 48 48 2 2.22 88.8 4.2 5.26 75
6. 54 48 2.5 2.25 89.9 6.2 53 85.4
7. 48 54 2 2.22 88.9 5.7 5.27 92.4
8. 48 48 2 2.22 89.2 4.5 5.25 83.4
9. 48 48 2 2.16 92.2 5.1 4.84 95
10. 48 48 2 2.22 88.8 4.2 5.26 75
Table 5.b) Result Table for ANN Model 2
Sr.  Depth of Depthof Accuracy Core Core Accuracy Rotor Rotor
No. Stator Stator % Back Back % Slots Slots
Slot Slot Width Width Target Predicted

Target Predicted Target Predicted

(mm) (mm) (mm) (mm)
1. 25 22.57 90.3 22.5 24 93 16 24
2. 27 22.5 83.1 27.5 24 87.3 32 32
3. 30 23 74.3 33 24 73 32 32
4. 20 22.5 87.5 27 24 89 24 24
5. 18 22 75.2 23.5 24 97.4 24 24
6. 26 22.45 86.3 23.5 24.3 97.8 32 32
7. 26 22.4 86.2 22.5 24 92.7 24 24
8. 20 22.5 87.5 25 24 96.5 24 24
9. 22 229 95.9 21.5 24 87.3 16 24
10. 18 22 75.2 23.5 24 97.4 24 24
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6 Conclusion

In this paper, an Artificial Neural Network (ANN) — based prediction algorithm for the preliminary motor
design of a PMSM is proposed. Initially we have discussed the theoretical design of a PMSM and the
importance of Torque per rotor volume. Further, we have discussed in detail the two set of ANN model
approach to predict the motor dimensional parameters. The prediction algorithm has been developed using
python, and it has provided satisfactory results, which are in close agreement with those obtained from the
benchmark data. The accuracy of the predicted values with respect to the target values varies from 70% to
99%.

The ANN based Machine-learning approach for optimum design of electric motor design parameters,
presented in this paper, will help to avoid the intensive use of numeric techniques such as finite element
method. With the more product line-up on electric vehicle globally and with the availability of more data, the
model can be matured and the model will gain more confidence and have a prediction accuracy of 99% can
be achieved.

This ANN-based design approach may also be expanded to include many other electrical and thermal design
parameters as well and can be expanded other engineering fields.
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