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This paper presents a procedure for determining the initial design parameters using analytical calculation 

method for a PMSM (Permanent magnet synchronous motors), followed by developing a machine 

learning algorithm with the available benchmarking data to determine the motor design parameters. A 

comparison study with the results obtained from Analytical calculation and machine learning algorithm 

carried out in determining the initial sizing parameters, also the severity of impact is accessed 

qualitatively and results are presented. 
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1 Abstract 

The global attention towards Electric Vehicles is growing tremendously, mainly because of environmental 
issues in recent years. There has been a significant increase in the development of hybrid and pure electric 
vehicles as they are considered as an effective solution for reducing the carbon footprint. There is a lot of 
research happening, especially in the design of high performance e-motors for Electric Powertrain 
applications.  

In this paper, we have presented an ANN algorithm design approach, which will help in saving the time 
needed for theoretical design, and with an optimum design solution, can reduce the time and iterations of 
FEA required while designing an e-motor. 

In this paper, the focus is on the PMSM due to its higher efficiency and more advantageous torque 
characteristics compared to other types of motors. 

2 Introduction 
In current scenario, performance improvements such as reducing the overall time and enhancing the 
efficiency of the electric motor are one of the most important challenges. There are many studies conducted 
and documented on the sizing of the electric motor to reduce the losses and increase the torque density of the 
machine. 

In general, an electric machine designer translate a set of design specifications to design choices and ensuring 
that the final product meets the requirements. To support the design decision, analysis and modelling of the 
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machine is required and that depends on the level of details that is targeted based on that approach depend, 
either analytical equations or detailed 2D or 3D finite element analysis tools can be used. 

Data analytics approach involving the analysis of data to draw a conclusion is gaining traction is various 
domains. Though a data analytic approach involves big data to predict the result closest to the actual, a trial 
is carried out in this paper with the available data and discussed in detail on the step by step process on 
determining the major electric motor design parameters using the Machine-learning (ML) algorithm (ANN 
algorithm) using python software.  

The result obtained, can then be used with any FEA tool to improve the accuracy and efficiency of the final 
design. Using this data - based approach reduces the time for any FEA iterative design process, and enhances 
the accuracy of the design in a shorter time span.  

3 Sizing of Permanent Magnet Synchronous Motor 
The design of electric machine largely an iterative process implying that parts of the design have to be 
repeated in order to obtain the desired solution. In most of the cases, the limitation in terms of size is 
determined from the available packaging volume for any BEV or PHEV, the electric machine designer has 
to provide a solution that meets the speed, torque and power requirement and target for high Torque to volume 
ratio as a primary objective. 

In the Theoretical Design approach, we first determine the stator and rotor geometry based on key 
assumptions. Then we calculate the required electrical loading (E) and magnetic loading (M) followed by 
calculating the Back EMF. The calculations are concluded with the Torque per rotor volume (TRV).  

3.1 Determining the stator and rotor geometry 

 

 

 

Figure 1. PMSM Geometry 

 

𝑑 = 𝑆௢௥ − 𝑐 −  𝑆௜௥          (1) 

𝑆௜௥ =  𝑅௢௥ + 𝐺௔௜௥          (2) 

𝑆𝑁௧௘௘௧௛ =  𝑆𝑁௦௟௢௧          (3) 

𝑆𝐴௧௢௢௧௛ = 𝑑 𝑥 𝑏           (4) 

𝑆𝐴௦௟௢௧ = 𝐴 − 𝐵           (5) 
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Table1: Nomenclature for Motor Geometry. (Refer Fig. 1)  

𝑆𝐴௦௟௢௧ =  
గ(ௌ೔ೝାௗ)మି గௌ೔ೝ

మି ௌே೟೐೐೟೓௫ௌ ೟೚೚೟೓

ௌேೞ೗೚೟
        (6) 

𝑆𝐴௦௧௘௘௟ =  𝐵 +  𝑆𝐴௬௢௞௘          (7) 

 

The overall magnet area -  𝐴௠ =  𝑀௪ 𝑥 𝑀௟ 𝑥 𝑁௣      (8) 

The overall rotor steel area assuming that the impact of flux barriers negligible and no further holes in the 
rotor 𝑅௦௔ =  𝜋𝑅௢௥

ଶ −  𝜋𝑅௜௥
ଶ −  𝐴௠        (9) 

Considering the densities of the material used such as electrical steel (7650 kg/m3), copper (8960 kg/m3) 
and NdFeB magnet (7400 kg/m3), the rotor inertia as below 

Rotor inertia I୰ =  
஠୶஡౩౪౛౛ౢ୶୐౩౪ౡ

ଶ
x (𝑅௢௥

ସ −  R୧୰
ସ)      (10) 

3.2 Electrical loading (E) and Magnetic loading (M) 

The electrical loading E in general defined as -  

𝐸 =
்௢௧௔௟ ௔௠௣௛௘௥௘ି௖௢௡ௗ௨௖௧௢

஺௜௥௚௔௣ ௖௜௥௖௨௠௙௘௥௘௡௖௘
=  

ଶ ௫ ௠ ௫ ்೛೓௫ ூ

గ ௫ ଶ∗ோ೚ೝ
         (10) 

𝑚- No of phases, 𝑇௣௛ - no of turns in series per phase, 𝐼 – RMS value of the phase current 

This by assuming the air gap is small and as a result outer rotor diameter and the inner rotor diameter are 
equal. 

The electrical loading is limited by factors such as the stator slot depth, the achievable packing factor of 
copper in the stator slots (or else known as slot fill factor), and the allowable copper current density based on 
the maximum allowable temperature raise. Typical values for the electrical loading are in the region f 15-
45(kA/m), for continuous operation. 

The electrical loading is related to current density (J) in the conductors and are shown as 

𝐽 =
஺ ௫ ௉ೞ೗೚೟  

ௌௌ೑೑  ௫ ௌೞ೗೚೟
            (11) 

Typical values for the maximum 𝐹௦௟௢௧ are in the range od 0.4-0.5 and may vary with the chosen winding 
distribution. Additionally as the voltage rating of the machine increase, lower values for 𝐹௦௟௢௧ should be 
encountered as, more space required for the insulation. These values might seems small to what one would 
expect, but indicate the big part that insulation and air occupy in a slot. Higher values can be achieved with 
the rectangular slots and use of rectangular copper bars, which on the other hand have the drawback of high 
copper losses at high frequencies, caused by the skin effect 

The magnetic loading is the average flux density over the rotor surface due to the permanent magnets. It can 
be associated with the average flux per pole through with the assumption of sinusoidal flux density 
distribution. 

𝜑 = 𝐵 𝑥 
గ௫஽௫௅ೞ೟ೖ

ଶ௣
         (12) 

𝑆௢௥ Stator outer radius a Slot width 𝑀௪ Magnet width 𝑆𝐴௦௟௢௧ Stator slot area  

𝑆௜௥ Stator inner radius b Lamination width 𝑀௟ Magnet length 𝑆𝑁௧௘௘௧௛  Stator no of teeth 

𝑅௢௥ Rotor outer radius c Yoke width 𝐺௔௜௥ Air gap 𝑆𝑁௦௟௢௧ Stator no of slot 

𝑅௜௥ Rotor inner radius d Slot height 𝐴௠ Magnet area 𝑆𝐴௬௢௞௘ Stator yoke area 

𝐿௦௧௞  Stack length 𝑁௣ No of pole 𝑅𝐴௦௧௘௘௟ Rotor steel area  𝑆𝐴௦௧௘௘௟ Stator steel area 
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𝜑 –Average flux per pole with the assumption of a sinusoidal flux density distribution 

𝑝 – Number of pole pairs 

The magnetic loading is usually limited by saturation of the stator teeth of the machine and hence by the 
saturation flux density of the stator iron. The ratio of stator teeth width to the tooth pitch defines the maximum 
allowed value for the magnetic loading assuming sine-distributed flux. 

  𝐵 =  
ଶఙ

గ
𝑥 𝐵௧,௣௘௔௞        (12) 

𝜎 -  Ratio of stator teeth width to the tooth pitch  

Typical values of magnetic loading are in region of 0.4 – 0.7T, while in special occasions where the high 
torque density is required; it may reach the value of greater than or equal to 1T. High values of magnetic 
loading are required to achieve high torque and power performance. 

3.3 Generated EMF (back-EMF) per phase (𝑩𝒆𝒎𝒇) 

The generated EMF (or else known as back – EMF) per phase € is associated with B and its RMS value is 
given as 

𝐸 = ඥ2𝑥𝜋𝑥𝑘௪ଵ𝑥𝑇௣௛𝑥𝜑𝑥𝑓௘ =
ඥଶ௫గ௫௞ೢభ௫்೛೓௫ఝ௫௣௫ ೘

√ଶ
=

గమ

√ଶ
𝑥

௞ೢభ௫்೛೓௫ெ௫஽௫ ೞ೟ೖ௫௙೐

௣
=

గ௫௞ೢభ௫்೛೓௫ெ௫஽௫௅ೞ೟ೖ௫ఠ೘

ଶ√ଶ
 (13) 

𝑓௘ - Fundamental electrical frequency 

𝜔௠ - Mechanical rotational speed in rad/sec (
2𝑥𝜋𝑥𝑓௘

𝑝ൗ )   

𝑘௪ଵ - Fundamental harmonic winding factor typical in the region of 0.85 to 0.95 

Below equation denotes the flux density at the air gap as created from the permanent magnet 

𝐵 =  
஻ೝ

ೄ೒

ೄ೘
ା 

ഋೝೣ೗೒

೗೘

            (14) 

𝐵௥ - Intrinsic flux density, 𝑆௚- Air gap area per pole considering 𝜋𝑥𝐷𝑥𝐿௦௧௞
𝑁௣

൘  

𝑆௠ - Magnet surface facing the air gap considering𝐿௦௧௞𝑥𝜔௠, 𝜇௥ - Magnet relative coil permeability 

3.4 Torque per rotor volume calculation 

The torque per unit rotor volume (TRV) describes the amount of torque available from the given rotor volume. 
As such, it is the common measure for comparing the motors and for initial motor sizing for a given 
application. Under the assumptions that the power factor is unity and all the available power at the air gap is 
converter into mechanical power, the generated torque on the shaft of the electrical machine can be estimated 
as  

𝑃௚ = 𝑚𝑥𝐵௘௠௙𝑥𝐼  (Watt)                (15) 

Assuming that the power factor is unity and all the available power at the air gap 𝑃௚ is converter into 
mechanical power and the generated torque on the shaft of the electric machine 𝑇௘ can be estimated using. 
The assumption is because of desire to minimize the volt-ampere rating of the inverter. 

𝑇௘ =  
௠ாூ

ఠ೘
=  

గ௫௠௫௞ೢభ௫்೛೓௫ଶ௫ோ೚ೝ

ଶ√ଶ
 𝑥𝑀𝑥𝐼 =  

గమ௫௞ೢభ௫(ଶ∗ோ೚ೝ)మ௫௅ೞ೟ೖ

ସ√ଶ
 𝑥𝑀𝑥𝐸    (16) 

𝑇𝑅𝑉 =  ೐்

௏ೝ
=  

గ௫௞ೢభ

√ଶ
𝑥𝑀𝑥𝐸  (Considering  𝑉௥ =  

గ௫஽మ௫௅ೞ೟ೖ

ସ
)     (17) 

Thus, the torque is directly proportional to square of diameter and length of the stack. With the help of similar, 
various empirical relations including the different loss calculations, the sizing of the electric machine is 
calculated 
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4 Preliminary Motor Design using Artificial Neural Networks 

4.1 Dataset for Motor Design Parameters  

To build a Machine Learning model, the primary requirement is clean data from reputed sources. We have 
collected most of the data from A2Mac1 Automotive Benchmarking website, and created a dataset by 
considering the key parameters for an E-Motor design. We obtained data for the following Traction Motor 
parameters for an Permanent Magnet Synchronous Motor with rotor having Double V Shape slots–  

Table 2. Parameters considered while data collection for PMSM 

Motor Parameters Stator Parameters Rotor Parameters 

Motor Type – PMSM 
Peak Power (kW) 
Maximum Torque (N-m) 
Continuous Power (kW) 
Continuous Torque (Nm) 
Battery Voltage (Volts) 
Stator Winding – Hairpin 
Winding or Round Copper Wire 
Winding 
 

Stator Outer Diameter (SD1) 
(mm) 
Stator Inner Diameter (SD2) 
(mm) 
Stack Height (mm) 
No. of Stator Slots 
Depth of Stator Slot (DSS) (mm) 
Width of Stator Slot Opening 
(WSSO) (mm) 
Width of Stator Slot Bottom 
(WSSB) (mm) 
Core Back Width (CBW) (mm) 
Air Gap Length (mm) 

Rotor Outer Diameter (RD1) 
(mm) 
Rotor Shaft Diameter (RD2) 
(mm) 
No. of Rotor Poles 
No. of Rotor Slots 
Magnet Width (mm) 
Magnet Thickness (mm) 
Magnet Angle (deg) 
Magnet Position from shaft 
centre (mm) 
 

 

 

 
Figure 2. Nomenclature of Stator and Rotor Parameters considered for ANN Model 
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 (a) (b) (c) 

Figure 3. a) Peak Power vs Stator OD, b) Peak Power vs Stator ID, c) Peak Power vs Stack Height 

 

For creating the ANN Model, we have used open source software – Jupyter Notebook, and written the code 
in Python. 

Data Pre-Processing was carried out before creating the model, like converting all numeric data into uniform 
data type, Data Cleaning to fill in missing data, Normalization to scale the data for more accurate comparison, 
Feature Selection for extracting relevant and important variables for analysis. After pre-processing, the clean 
data set was divided into training, validation and testing data to be fed as input to the ANN Model 

As per the proposed approach, we created two different ANN Models for prediction of Stator and Rotor 
design parameters. 

4.2 Neural Network Schematic 

The first ANN Model focuses on predicting the main dimensions of the motor. The below schematic depicts 
the parameters considered for the first ANN Model. 

 

 
Figure 4. Schematic for ANN Model 1 

 

The second ANN Model uses the output of the first ANN Model as an input, and predicts the below 
mentioned stator and rotor lamination design parameters as output. 
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Figure 5. Schematic for ANN Model 2 

4.3 Hyper parameters 

 

Table 3 summarises the hyper-parameters used to create the ANN Models 1 and 2, which determine the 
Neural Network structure and how the network is trained. 
  

Table 3. Hyper-parameters for ANN Model 1 and ANN Model 2 

Hyper parameters ANN Model 1 ANN Model 2 

Input Layer Neurons 8 7 

Output Layer Neurons 6 6 

Hidden Layers 3 3 

Hidden Layers Neurons 10 10 

Hidden Layer Activation 
Function 

Rectified Linear Activation 
Unit (RELU) 

Rectified Linear Activation 
Unit (RELU) 

Output Layer Activation 
Function 

Linear Function Linear Function 

Loss Function Mean Squared Error Mean Squared Error 

Optimizer Adaptive Moment Estimation 
(ADAM) 

Adaptive Moment Estimation 
(ADAM) 

Batch Size 10 10 

Epochs 10 10 

 

4.4 Python Code for ANN Model 

We have chosen python language for building the ANN Model, to utilize the ease with which neural networks 
can be created with the use of TensorFlow. Figure 5 and Figure 6 shows the python code for the ANN Model 
1 and 2.  
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In Machine Learning context, accuracy is the ratio of the number of correctly predicted samples to the total 
number of samples. The training accuracy and validation accuracy for both the models is increasing, however 
overall value can be improved with more data. We can have a more mature ANN model with greater 
confidence and prediction accuracy after creating a larger data set. 

 

 
Figure 6. Code for ANN Model 1 

 

Figure 7. Code for ANN Model 2 
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5 Results 
 

 
(a)   (b)     (c) 

Figure 8. a) Peak Power vs Target and Predicted Stator OD, b) Peak Power vs Target and Predicted Stator ID,  
 c) Peak Power vs Target and Predicted Stack Height 

 

 

Figure 9. Output of ANN Model 1 based on testing data 

 

 

Figure 10. Output of ANN Model 2 based on testing data 
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Table 4.a) Result Table for ANN Model 1 

Sr. 
No. 

Stator 
OD 

Target 
(mm) 

Stator 
OD 

Predicted 
(mm) 

Accuracy 
(%) 

Stator 
ID 

Target 
(mm) 

Stator  
ID 

Predicted 
(mm) 

Accuracy 
(%) 

Stack 
Height 
Target 
(mm) 

Stack 
Height 

Predicted 
(mm) 

Accuracy 
(%) 

1.  235 217 92.2 154 146 94.7  160 147 91.6 

2.  235 218  92.6 163 146 90 140 147 94.8 

3.  234 220 93.9 152 146 96.1 135 143 94.4 

4.  218 218 100 144 146 98.7 140 147 95.3 

5.  200 198 99.1 135 158 83 175 164 93.8 

6.  225 220 97.8 152 148 97.4 135 142 94.8 

7.  205  216 94.6 134 145 91.9 175 147 83.7 

8.  205 207 99 135 154 86.2 180 154 85.5 

9.  200 198 99 135 158 82.6 175 165 94.2 

10.  242 217 89.8 163 146 89.5 140 147 94.8 

 

 

 

Table 4.b) Result Table for ANN Model 1 

Sr. 
No. 

Rotor  
OD 

Target 
(mm) 

Rotor  
OD 

Predicted 
(mm) 

Accuracy 
(%) 

Rotor  
ID Target 

(mm) 

Rotor  
ID 

Predicted 
(mm) 

Accuracy 
(%) 

Gap 
Length 
Target 
(mm) 

Gap 
Length 

Predicted 
(mm) 

Accuracy 
(%) 

1.  152 144 94.8 45 55 78.0 1 1.15 84.9 

2.  160 144 89.8 47 55 84.0 1.5 1.15 76.4 

3.  150 144 95.9 65 55 85.1 1 1.18 82.4 

4.  142 144 98.8 63 55 87.8 1 1.15  84.9 

5.  133 146 90.5 50 56  88.7 1 1.05  95.2 

6.  150 143 95.2 63 57 89.7 1 1.17 83.4 

7.  132 145 89.9 60 55 92.4 1 1.15 84.5 

8.  133 143 92.4 58 55 95.3 1 1.1 88.7 

9.  139 144 96.5 55 58 95.4 1 1.15 84.8 

10.  133 146 90.4 56 58 96.2 1 1.04 95.5 
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Table 1.a) Result Table for ANN Model 2 

Sr. 
No. 

Stator 
Slots 

Target 

Stator 
Slots 

Predicted 

Width of 
Stator 
Slot 

Opening 
Target 
(mm) 

Width of 
Stator 
Slot 

Opening 
Predicted 

(mm) 

Accuracy 
% 

Width of 
Stator 
Slot 

Bottom  
Target 
(mm) 

Width of 
Stator 
Slot 

Bottom 
Predicted 

(mm) 

Accuracy 
% 

1.  48 48 2.5 2.22 88.7 6 5.23 87.2 

2.  54 48 2.7 2.25 83.3 6 5.3 88.3 

3.  48 48 3 2.24 75 7.2 5.32 74 

4.  48 48 2 2.24 88.1 4.5 5.28 83 

5.  48 48 2 2.22 88.8 4.2 5.26 75 

6.  54 48 2.5 2.25 89.9 6.2 5.3 85.4 

7.  48 54 2 2.22 88.9 5.7 5.27 92.4 

8.  48 48 2 2.22 89.2 4.5 5.25 83.4 

9.  48 48 2 2.16 92.2 5.1 4.84  95 

10.  48 48 2 2.22 88.8 4.2 5.26 75 

 

 

Table 5.b) Result Table for ANN Model 2 

Sr. 
No. 

Depth of 
Stator 
Slot 

Target 
(mm) 

Depth of 
Stator 
Slot 

Predicted 
(mm) 

Accuracy 
% 

Core 
Back 
Width 
Target 
(mm) 

Core 
Back 
Width 

Predicted 
(mm) 

Accuracy 
% 

Rotor 
Slots 

Target 

Rotor 
Slots 

Predicted 

1.  25 22.57 90.3 22.5 24 93 16 24 

2.  27 22.5 83.1 27.5 24 87.3 32 32 

3.  30 23 74.3 33 24 73 32 32 

4.  20 22.5 87.5 27 24 89 24 24 

5.  18 22 75.2 23.5 24 97.4 24 24 

6.  26 22.45 86.3 23.5 24.3 97.8 32 32 

7.  26 22.4 86.2 22.5 24 92.7 24 24 

8.  20 22.5 87.5 25 24 96.5 24 24 

9.  22 22.9 95.9 21.5 24 87.3 16 24 

10.  18 22 75.2 23.5 24 97.4 24 24 
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6 Conclusion 

In this paper, an Artificial Neural Network (ANN) – based prediction algorithm for the preliminary motor 
design of a PMSM is proposed. Initially we have discussed the theoretical design of a PMSM and the 
importance of Torque per rotor volume. Further, we have discussed in detail the two set of ANN model 
approach to predict the motor dimensional parameters. The prediction algorithm has been developed using 
python, and it has provided satisfactory results, which are in close agreement with those obtained from the 
benchmark data. The accuracy of the predicted values with respect to the target values varies from 70% to 
99%. 

The ANN based Machine-learning approach for optimum design of electric motor design parameters, 
presented in this paper, will help to avoid the intensive use of numeric techniques such as finite element 
method. With the more product line-up on electric vehicle globally and with the availability of more data, the 
model can be matured and the model will gain more confidence and have a prediction accuracy of 99% can 
be achieved.  

This ANN-based design approach may also be expanded to include many other electrical and thermal design 
parameters as well and can be expanded other engineering fields. 
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