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Executive Summary

This paper instantiates a convex electric powertrain design optimization framework, bridging the gap
between high-level powertrain sizing and low-level components design. We focus on the electric motor
and transmission of electric vehicles, using a scalable convex motor model based on surrogate model-
ing techniques. Specifically, we first select relevant motor design variables and evaluate high-fidelity
samples according to a predefined sampling plan. Second, using the sample data, we identify a convex
model of the motor, which predicts its losses as a function of the operating point and the design param-
eters. We also identify models of the remaining components of the powertrain, namely a battery and a
fixed-gear transmission. Third, we frame the minimum-energy consumption design problem over a drive
cycle as a second-order conic program that can be efficiently solved with optimality guarantees. Finally,
we showcase our framework in a case study for a compact family car and compute the optimal motor de-
sign and transmission ratio. We validate the accuracy of our models with a high-fidelity simulation tool
and calculate the drift in battery energy consumption. We show that our model can capture the optimal
operating line and the error in battery energy consumption is low. Overall, our framework can provide
electric motor design experts with useful starting points for further design optimization.

Keywords: electric drive, motor design, powertrain, modeling, optimization

1 Introduction

Electric vehicles are increasingly pervading the market, providing users with a zero-emission solution to
personal mobility [1]. However, to accelerate the widespread adoption of these vehicles, there is room
for improvement in their affordability and range [2]. Streamlining the design process of the electric
(e-)powertrain is an important step towards this goal, which can be achieved by both reducing the time
and cost of the technological development and converging towards better designs of the e-powertrain, ac-
counting for the specific application. This is a difficult task, since the e-powertrain is a complex system
that consists of strongly coupled components, namely the battery, the electric motor (EM), the trans-
mission, and the final d}llrive—cﬁfferentia unit, as shown in Figure 1. Moreover, there is typically a large
disparity between the high-level vehicle requirements that powertrain designers might impose (in terms
of performance, cost and energy efficiency) and the low-level component design questions that are raised
in this context. Specifically, optimizing the design of the EM has proven to be a challenge due to the high
number of design variables and the multidisciplinary character of the problem [3]. To this day, in holistic
powertrain design problems, the modeling is generally performed by using significant simplifications and
assumptions to ensure the problem is computationally tractable. This is achieved, for instance, by linearly
scaling the EM and its losses in the maximum torque and the mass, sacrificing accuracy [4]. However,
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implementing an optimization algorithm using accurate but computationally expensive models such as
the finite element (FE) method, is not amenable to optimization. This call for methods optimize the de-
sign of the e-powertrain with high accuracy, bridging the gap between high system-level sizing and low
system-level design optimization of components. We need to account for a scaling of the components
with more relevant parameters, accuracy and wider scaling ranges, whilst maintaining computational
tractability. A%ainst this backdrop, this paper presents a convex design optimization framework that
leverages a scalable, convex EM optimization model based on surrogate modeling techniques.

BAT@ B, TPdci EM EP,H FGT 4"<FD

e AN DPfgt = Vgt

T

Figure 1: A schematic layout of the electric powertrain. It consists of a battery pack (BAT), an electric motor
(EM), a fixed-gear transmission (FGT) and a final drive-differential unit (FD) that is connected to the wheels. The
arrows indicate the power flow between the components.

Related literature: This work relates to three main research streams. The first stream considers the design
optimization of EMs on a low system level. This issue is usually solved using FE-based approaches
together with derivative-free optimization, but generally has a low-level objective, such as optimizing
total harmonic distortion, torque ripple or power density [3, 5, 6]. This does not connect well to the
system-specific application (vehicle propulsion) and objective (powertrain energy consumption and cost).
The second steam considers the optimal sizing and control of (hybrid-)electric powertrains on a high
system level. This problem is mainly addressed with derivative-free algorithms [7, 8] or convex opti-
mization [4, 9, 10]. However, as mentioned earlier, these methods require simplified scalable models for
comple):x components that are usually only valid for limited scaling ranges (+10-20% w.r.t. the maximum
torque).

Thg final stream aims to connect the previous two research streams and comprises the design optimization
of powertrains with more detailed EM models. The methods are based on either parametric regression
models of high-fidelity data in a relatively large EM training set [11], geometric scaling of a referent
EM model [12], or analytical design approaches [13]. However, all these methods lack global optimality
guarantees and deal with high computational times. What is more, relatively large training sets require
much effort from EM design engineers, whereas analytical models are specified for a particular EM [14].
In conclusion, to the best of the authors’ knowledge, there are hardly any methods accounting for ac-
curate EM design models in e-powertrain optimization in a computationally-efficient manner, giving
accurate predictions over the whole design space, whilst limiting the efforts required by an EM design
expert and still providing globally optimal solutions.

Statement of contributions: In order to address these challenges, this paper presents a convex optimiza-
tion framework that optimizes the design of the EM and the transmission, based on surrogate modeling
techniques. Specifically, we first derive a scalable, convex EM model that predicts the losses as a func-
tion og the geometric dimensions and the rated power, trained with data from a pre-defined sampling
plan. Second, we leverage second-order conic programming to frame the minimum-energy consumption
design problem, which minimizes the battery energy consumption of the e-powertrain over a drive cy-
cle and computes the optimal EM design and transmission ratio. Third, to showcase our framework, we
solve the problem on the WLTP cycle using nonlinear numerical solvers, providing a solution guaranteed
to be globally optimal. Finally, we validate the accuracy of our solution with high-fidelity data.

Organization: This paper is organized as follows: Section 2 presents the EM surrogate model and the
encompassing optimization problem, which contains models and constraint functions for the vehicle and
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the remaining powertrain components. We display our optimization framework in Section 3, after which
we draw the conclusions in Section 4, along with an outlook on future research.

2 Methodology

In this section, we construct the optimization problem by presenting convex constraints that describe the
electric vehicle and its powertrain. We present the objective and the vehicle and component models in
Sections 2.1-2.4 wheregy we lay particular emphasis on the EM model, after which we summarize the
problem in Section 2.5, followed by a discussion on the assumptions in Section 2.6.

The powertrain we consider in this paper, shown in Figure 1, contains a battery, an EM, and a fixed-gear
transmission (FGT) that is connected to the wheels via a final drive and a differential. In this work, we
are jointly optimizing the design of the EM and the FGT.

2.1 Objective

The objective in our optimization problem is to minimize the internal energy consumption of the battery
over a drive cycle:
min AE},, (1)

where AFEy, is equal to the difference in battery state-of-energy (SOE), given by
AEy, = Ey(0) — Ey(T), 2

where E3,(0) and Ey,(T") are the SOE at the beginning and the end of the drive cycle, respectively.

2.2 Longitudinal Vehicle Dynamics and Transmission

In this section, we model the vehicle and the transmission. As is common practice in powertrain sizing
studies, we adopt the quasi-static modeling approach [15] in time domain. To keep our derivations
succinct, we will drop the time dependence (¢) whenever it is clear from the context. The power requested
at the wheels P4 is equal to

1
Peg=v- (2'pa-cd‘Af-v2+mV-(g‘cr-cos(a)+g-sin(a)+a)>, 3)

where v, a and « are the velocity, acceleration and road inclination given by the drive cycle, respectively,
pa is the density of air, cq is the drag coefficient, A¢ is the frontal area, m., 1s the mass of the vehicle, g 1s
the Earth’s gravitational constant, and ¢, is the rolling resistance coefficient. We assume that the design
of the ED does not significantly influence the total mass of the vehicle m., therefore we can compute
P,¢q prior to the optimization.

We also assume that the FGT and the final drive have a constant efficiency. We only consider motor
designs that can deliver the requested power, and we saturate the negative requested power with the
maximum motor power Py, rated. The mechanical motor power P, which we can also pre-compute, is

then equal to

1 .
P — e  Lrea if Preq > 0
maX(*Pm,rateda Mgt~ Mfd = Tb - Preq) if Preq <0,

where 7t and 7)¢q are the efficiencies of the FGT and final drive, respectively, and 7}, is the regenerative

braking fraction.
We optimize the FGT ratio ~y¢., which is bounded by

Vgt € [Vgénv 7%‘? X]a 4)

where (-)™" and (-)™2¥ are the minimum and maximum values of the design variables. The input speed
of the transmission, which is identical to the output speed of the EM wy,, is equal to

v
Wm = Vfgt * Vfd - 77 (5)

w
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where 7¢q is the ratio of the final drive and 7, is the radius of the wheels. We ensure the vehicle can
reach the maximum velocity vy,ax by
r
Vgt < Wm max * 7W7 (6)

Umax

where wmy max 18 the maximum speed of the motor. We also require the vehicle to be able to launch from
standstill on a road inclination angle « by the following constraint:

1
Mgt ~ TMd - ,-Tm;rnax7

(N

Vgt = My + G - Tw - SIN(Umax) -

where T}, max 1s the maximum torque of the motor.

2.3 Electric Motor

In this section, we derive a model of the EM. As mentioned in Section 1, this work focuses on creating
an accurate scalable model of the EM, whereby we draw inspiration from classical surrogate modeling
techniques, whilst preserving convexity. The goal of the EM model is to predict the motor losses P, 1oss

as a function of the operating point and the design variables

Pm,loss = f(Pmywnupm)v

where pp, is the set of EM design variables.

To construct the surrogate model, we require high-fidelity samples of EMs. To this end, we use the open-
source analytical tool MEAPA in [16], which is developed for the design and analysis of permanent
magnet synchronous and asynchronous induction motors. In this work, we focus on surface-mounted
permanent magnet motors, with a fixed rated voltage U, rated speed wyy, rateqd and number of pole pairs
np. The design variables we consider are the rated power Py, rateq and the relative length A. The relative

length can be interpreted as the ratio between the length and the radius of the motor (measured at the
stator’s inner circumference between two poles), specifically given by

ls-2-np

A= P
7I'-Ds’i7

where [ is the length and D ; is the inner diameter of the stator.

2.3.1 Sampling Plan and Surrogate Model Formulation

To construct our scalable surrogate model, we perform high-fidelity evaluations on specific locations in
the design space, according to a predefined sampling plan. The design space is bounded by

= [/\min7)\max] ¥

min max
Pm,rated € [Pm,ratedv m,rated]' (9)

The specific sampling plan we select in this work, is a 3-level 2-factor Full Factorial sampling plan. The
locations of the samples in the design space are shown in Figure 2.

Using the high-fidelity data we acquired after evaluating the EMs in the sampling plan, we construct a
convex, scalable surrogate model of the EM. The EM model formulation is inspired by previous work,
see [10], with the addition of design variables. The electrical power Py is equal to

Pdc = m+Pm,loss- (10)

As mentioned before, we can pre-compute the required mechanical tpower exerted by the EM P, hence
the

we treat it as a given, exogenous parameter. We train the model o losses for NV different levels of
Py e [0, Pn 1], see [17, 18]. We express the motor losses, after relaxing the constraint, as

Palossi > T Qumitm Vi € [1,..., N, (11)

where ()i ; is a matrix of fitting coefficients subject to identification, determined for each level of Py,.
For power levels in between the fitted values, we linearly interpolate the fitting coefficients. Vector xy,,
which contains constant values, main factors, first-order interactions, and quadratic terms, is equal to
27,

2 2
Tm = [1) Wm, Pm,rated» )‘a Wm - Pm,ratedv Wm - )‘7 Pm,rated : )‘a W Pm,rated’
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Figure 2: The EM sampling locations within the design space, evaluated with the MEAPA tool, following a 3-level
2-factor Full Factorial sampling plan. The NRMSE of P, for each sample is visible in the color bar, with the
mean NRMSE for all samples equal to 0.23%.

To preserve convexity, we have relaxed the constraint in (11) and ensure that ()., ; are positive semi-
definite matrices, see [19]. Given the objective in (1), the constraint in (11) will always hold with
equality. After we determine values for the coefficients using semi-definite programming as in [10], we
can assess the quality of the model by inserting the same design parameters as in the sampling plan for
the operational envelope, up to P2, The normalized root-mean-squared error (NRMSE) of predicting
Py 1s visible for each sample in Figure 2, resulting in a mean NRMSE for all samples equal to 0.23%.
The efficiency maps of the data points and the predictions are shown in Figure 3.
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Figure 3: The efficiency maps of all sampled data points, along with the efficiencies predicted by the EM model.

We ensure the motor is powerful enough to complete the drive cycle with the following constraint:

_Pm,rated < Pm < Pm,ratedy (12)

We determine the maximum torque 7y, max from

<

Tm,max >

Pm rate:
~ m,rated (13)

’
Wm rated
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which we implement into our framework, in both motoring and regenerating mode, by

Preg - 1
Tm,max " Vgt * Mgt © Td > % (14)
1 P T
Tm,max Vgt > e (15)
nfgt * Nid %
In constraint (13), 71, max can relax, but we allow it since it sets an upper bound for the torque of the

motor.

2.4 Battery
In this section, we derive a model of the battery pack. The output power of the battery P, is equal to
Py, = Pye + Paux, (16)

where P, is the auxiliary power. Using the battery data from the quasi-static modeling toolbox in [15],
we model the internal battery power, after relaxation, as

P.>bg+by- B, +by- P a7

where by, b; and by are parameters subject to identification, with a resulting NRMSE of 1.23%. The
battery SOE changes with P; as

d
—F, = —P. 18
dt b i ( )
‘We bound the battery SOE with the state-of-charge limits as
Eb € [Cb,mina Cb,max} ' Eb,ma)u (19)

where F}, .« is the predetermined total battery capacity—and thus not an optimization variable—and
Cb,min and Cp max are the minimum and maximum state-of-charge levels, respectively. We assume that
the vehicle starts the drive cycle with a fully charged battery

Eb(0> = Cb,max : Eb,max~ (20)

2.5 Optimization Problem

In this section, we summarize the optimal design problem. The state variable is x = Ej,. The design
variables are p = (P rateds \; Vgt )-

Problem 1 (Nonlinear Convex Problem). The minimum-energy design is the solution of

min AE,
st.  (2) — (20).

Although Problem 1 is convex, it cannot be solved with standard convex solvers. However, we can
compute the solution, which is still guaranteed to be globally optimal, using nonlinear solvers.

2.6 Discussion

A few comments are in order. First, we assume that the mass of the EM does not significantly impact the
total mass of the vehicle, enabling us to pre-compute F;cq. In fact, the mass of the motor will change with

Py, rated, yet its contribution to the total mass of the vehicle is relatively small and can be neglected [20].

Second, in the training data set, some motors with a small value for A have to reduce the power at high
rotational speeds in order to not exceed the limits of the circumferential rotor speed and the flux linkage.
However, since vehicles in this application hardly operate in this region of the envelope, it is considered
of minor influence when optimizing the motor size in this stage of development. Third, we assume a
constant efficiency of the FGT, which is in line with common practice [21], and we assume that the
cooling system can cope with the heating of the motor [22]. Fourth, we have focused on two design
variables for the EM, whilst the low-level design space for motors can be of a higher dimension. Yet,
our framework can be readily extended to account for more design parameters. In the case that more
design parameters are selected, the Full Factorial sampling plan—given its exponential characteristic in
the number of parameters—can be replaced by Latin Hypercube, Central Composite or Box-Behnken
sampling plans [23].
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3 Results

In this section, we present the numerical results obtained when we apply the optimization models pre-
sented in Section 2 to the ED design of a compact car. We optimize the design of the ED for the World-
wide Harmonized Light Vehicle Test Cycle (WLTC) Class 3. Table 1 shows the vehicle parameters for
which the optimal design is obtained. The ED specifications are summarized in Table 2. We discretize
the optimization problem with a sampling time of 1s using the forward Euler method. We parse the
problem with CasADi [24] and solve it with the nonlinear solver IPOPT [25]. Because the problem is
still convex, we preserve global optimality guarantees, since any KKT point found is a global minimum.
Parsing the optimal design problem and solving it both take around 7 s. All computations are performed

on an Intel® Core™ i7-1065G7 CPU and 16.0 GB of RAM.

Table 1: Vehicle Parameters

Parameter Symbol Value Units
Wheel Radius Tw 0.35 [m]
Air drag coefficient cd 0.29 [-]
Frontal Area Ag 2.38 [m?]
Air density Pa 1.2041 [kg/m3]
Rolling resistance coefficient ¢, 0.0174  [-]
Gravitational constant g 9.81 [m/s?]
Brake fraction b 0.6 [-]
Final drive ratio Yed 1 [-]
Vehicle mass My 1,850 [ke]
Auxiliary power Paux 2 [kW]
Maximum SoC Cbmax  0.80 [-]
Minimum SoC Cb,min 0.20 [-]

Table 2: Electric Drive Parameters

Parameter Symbol Value  Units
Electric Motor
Voltage U 700 [V]
Rated speed Wm,rated 3,500 [rpm]
Maximum speed Wm,max 10,000 [rpm]
Number of pole pairs Ny 3 [-]
Relative length bounds max 4 [-]
)\min 1 [_]
Rated power bounds Platea 150 (kW]
Pnr?’lrr;te a 70 [kW]

Fixed-gear Transmission
Motor to Wheel Efficiency Mgt * Mea - 0.96 [-]

FGT ratio limits %’glf‘x 10 [-]
Vigt 1 [-]

Maximum velocity Umax 160 [km/h]

Maximum launch inclination  opax 10 [°]

3.1 Numerical Results

After solving the optimal design problem for the parameters in Tables 1 and 2, we arrive at an optimal
design solution of P, rated = 145kW, A = 3.491[-], 71t = 5.7[-]. This is in line with current power
ratings of electric vehicles with similar specification, such as the Volkswagen ID.3, which is rated at
150kW [26]. The efficiency map and limits predicted by the EM model of the solution design are shown
in Figure 4. The predicted trajectories in terms of Py, 1,45 and the battery SOE FEj, are shown in Figure 5.
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Figure 4: The efficiency map predicted by the EM model in the optimal solution (P ratea = 145kW, A =
3.49 [-]) is shown in the left subplot. On the right, the EM generated by the MEAPA tool for the same design as in
the solution, serving as a design validation.
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Figure 5: The trajectories of Py, 105 and E},, from both the optimal solution and validation. In the bottom subplot,
the battery energy drift 6 £, is indicated.
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3.2 Validation

In order to validate our models, we feed the obtained design values in the MEAPA tool and carry out the
analysis. The resulting efficiency map is shown in the right subplot of Figure 4. Although the EM model
prediction can more accurately capture the full efficiency map in the sampling points (Figure 3), the EM
prediction of the solution in the left subplot of Figure 4 can seize the optimal operating line relatively
well. To further quantify the modeling accuracy, we feed the obtained trajectories on the drive cycle from
the solution through the nonlinear efficiency maps of the validation. The resulting P, 1055 and the impact

of it on E}, are shown in Figure 5. The bottom subplot shows the error in battery energy consumption
FE},, which is quantified as the difference between the SOE trajectory from the solution (Fj},) and the
validation (E}, va1). At the end of the drive cycle, the error is equal to 30 kJ, which corresponds to 0.11%

w.r.t. the energy consumed. This shows that the framework is capable of accurately predicting the losses
of an optimally sized scalable motor.

4 Conclusions

In this paper, we proposed to bridge the gap between high-level powertrain sizing and low-level EM
design, and instantiated a convex optimization framework for the design of an electric motor (EM) and a
fixed-gear transmission, which incorporates accurate scaling of the EM. To this end, we took inspiration
from surrogate modeling techniques and applied the ideas to predicting the losses of an EM as a function
of its design, whilst preserving convexity. After computing the energy-optimal design given a drive cycle,
we comEared the solution with the data obtained from the high-fidelity tool for the same design. We ob-
served that the predicted efficiency maps behave only slightly differently, the optimal operating line was
captured well, with a relatively small error in energy consumption over a drive cycle of 0.21 %. There-
fore, this optimization model can aid EM design experts by providing them with a promising starting
point, from which they can further refine the low-level design of EMS for automotive applications.

This work opens the field to future research lines: First of all, the accuracy of the modpel over the full
design space—specifically, at the candidate optimum—could be improved by adding an iterative nature
to the optimization procedure. Namely, the use of infill points based on particular criteria can further
explore the design space or refine the model in the solution [27]. Second, the model can be extended by
including additional design variables.
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