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Executive Summary

Electric vehicles still account for a small share of the total amount of cars on the road. One of the major
issues preventing a larger uptake is their higher upfront cost compared to petrol cars. We aim to address
this issue by investigating a module-based product-family approach to take full advantage of economy-
of-scale strategies, reducing research, development, and production costs of electric vehicles. This paper
instantiates a concurrent design optimization framework, whereby different vehicle types share multi-
ple modular powertrain components, whose size is jointly optimized to minimize the overall operational
costs instead of being individually tailored. In particular, we focus on sizing battery and electric mo-
tors for a family of vehicles equipped with in-wheel motors. First, we identify a convex model of the
powertrain, capturing the impact of modules’ sizing and multiplicity on the mechanical power demand
and the energy consumption of the vehicles. Second, we frame the concurrent powertrain design and
operation problem as a second-order conic program that can be efficiently solved with global optimality
guarantees. Finally, we showcase our framework for a family of two different vehicles: a city car and a
compact car. Our results show that concurrently optimizing shared components increases the operational
costs by less than 3% compared to individually tailoring them to each vehicle, a value that would be
largely overshadowed by the benefits stemming from using the same components for the entire product
family.

Keywords: BEV (battery electric vehicle), Convex Optimization, Battery & EM model, Cost, Design
Methodologies

1 Introduction
The transition to sustainable energy and mobility is not progressing fast enough to meet objectives set by
world leaders [1]. Electric Vehicles (EVs) hold the potential to play a leading role in the future of trans-
portation, keeping cities less polluted and significantly reducing CO2 emissions [2]. Nevertheless, their
higher upfront cost compared to conventional petrol vehicles could slow down the transition to cleaner
mobility. In order to address this issue, we leverage product-family and economy-of-scale strategies to
develop and produce vehicles at a lower cost by designing their components in a modular fashion. Each
vehicle type contains one or multiple identical modules, jointly optimized to minimize the operational
cost of the whole family, accounting for the changing module’s size as well as multiplicity (Fig. 1). This
paper presents a convex design optimization framework with the scope of concurrently sizing battery and
electric motors (EMs) for a family of battery electric vehicles (BEV) equipped with in-wheel motors.
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Figure 1: Product family generated by the combination of two powertrain subsystems: electric motor and battery.

Literature Review: This paper pertains to two main research lines: powertrain and product-family design.
Powertrain design for single vehicles has been extensively studied, leading to a variety of models [3] and
optimization strategies [4]. For instance, [5] jointly design powertrain and controls to minimize the
energy consumption, while [6] and [7] maximize performances. However, to the best of the authors’
knowledge, these methods do not account for multiple vehicles at the same time. The second research
stream concerns product-family and platform design. These methodologies have been widely studied
and employed by industrial players due to their substantial benefits, proving to be effective in reducing
components’ costs and providing operational advantages in part sourcing, manufacturing, and quality
control [8]. They also foster the development and upgrade of differentiated products efficiently, increase
flexibility and responsiveness in manufacturing processes [9], and generate enormous savings in research,
testing, interface design, and integration [10]. Finally, producing or buying components in larger quanti-
ties triggers further saving, enabling economy-of-scale strategies. Traditionally, in a module-based prod-
uct family, new products are instantiated by adding, substituting, and removing one or more functional
modules [11], such as the battery pack or the electric motor. This strategy is called horizontal leveraging
and concerns more products sharing the same modules for different applications. Conversely, vertical
leveraging involves scaling components to attack different market niches. A visual representation of
these strategies is shown in Fig. 2. Nevertheless, the combined application of module-based product
family concepts and vehicles optimization has not been studied extensively. A thorough search of the
relevant literature yielded only one related study. [12, 13] used optimization for making commonality
decisions while controlling individual performance in a family of cars and developed a sensitivity-based
commonality strategy for family products of mild variation. Yet, their application concerns only auto-
motive body structures. In conclusion, to the best of the authors’ knowledge, there still appears to be a
research gap regarding the application of product-family strategies to powertrain design optimization.

1.1 Contribution
In this paper, we propose to bridge this gap by applying modularity and standardization to a family
of battery electric vehicles. We introduce a framework consisting in designing optimal single-sized
modules, specifically an in-wheel EM and a battery, for a whole family of vehicles. Instead of individual
scaling, we employ multiple copies of the same module to reach higher power and battery energy. The
modules’ size is determined by using a convex optimization approach, taking into account the impact of
changing components’ sizes and multiplicity to find the optimal compromise between a vehicle-tailored
design that would minimize energy consumption, and the requirement to produce different kinds of
vehicles to serve customer needs. We refer to this methodology as “Concurrent Design Optimization”
due to the fact that we perform a joint optimization of multiple powertrain components, considering
every vehicle in the family simultaneously.
Organization: The remainder of this paper is structured as follows: Section 2 presents the vehicles’
model, Section 3 formulates the optimization problem, and Section 4 presents the numerical results.
Finally, the conclusions are discussed in Section 5, along with an outlook on future research.
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Figure 2: Module-leveraging strategies in a family of vehicles.

2 Model
This section introduces the convex model of the vehicles that we employ in our framework (Fig. 3). In
line with common practices, we used a quasi-static approximation [14] for each of the main components
that make up the powertrain: EMs and battery. In Section 2.1 we introduce and explain the meaning
and use of scaling and multiplicity factors. Section 2.2 sets forth the longitudinal vehicle dynamics, and
Section 2.3 gives insights on the vehicles’ mass model, taking into account the changing components’
size in the optimization. Section 2.4 focuses on the electric motor, and Section 2.5 on the battery mod-
elling. Finally, Section 2.6 shows the model we used to estimate the operational costs. For the sake of
simplicity, we drop dependence on time t whenever it is clear from the context.

2.1 Scaling and Multiplicity Factors
We construct our model starting from the reference motor and battery that we used for the identification
of parameters and we assume that quantities scale linearly with the components’ size. For this reason,
we introduce the scaling factors

Sm =
Pm,max

Pm,max

,

Sb =
Eb,max

Eb,max

,

where Sm is the motor scaling factor, Pm,max and Pm,max are the maximum output power of the motor
and of the reference motor, respectively. Similarly, Sb is the battery scaling factor, while Eb,max and
Eb,max are the maximum energy of the battery and of the reference battery. Nevertheless, this approxi-
mation is only valid in the range of scales

Sm ∈ [Sm,min, Sm,max] ⊆ R+ (1)

Sb ∈ [Sb,min, Sb,max] ⊆ R+. (2)

Moreover, we account for the components’ multiplicity in the powertrain by introducing the motor and
battery multiplicity: Nm,i ∈ N+ and Nb,i ∈ N+, with the subscript i indicating that the quantity differs
from one vehicle type to the other. These pre-defined coefficients represent the number of module units
present in the powertrain.

2.2 Longitudinal Vehicle Dynamics
In order to compute the power requirement of the vehicles, we consider a given driving cycle consisting
of an exogenous longitudinal speed and acceleration trajectory: v(t) and a(t). For each vehicle, the
required power Preq depends on aerodynamic drag, rolling friction, gravitational force, and inertial force.

Preq,i = mi · v · (cr,i · g · cos(θ) + g · sin(θ) + a) +
1

2
· ρ · cd,i ·Af,i · v3, (3)
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Figure 3: Block diagram of a vehicle with two in-wheel motor and two battery modules.

where mi is the total mass of each vehicle subject to optimization, cr,i the rolling friction coefficient, g
the gravitational acceleration, ρ the density of the air, θ the road inclination, cd,i the aerodynamic drag
coefficient and Af,i the frontal area.

2.3 Mass
For each vehicle we compute the total mass as the sum of glider (vehicle without powertrain), battery,
and motor mass. While the glider mass m0,i varies from one type of vehicle to another, motor and battery
mass are computed by scaling the reference components mass mm and mb

mi = m0,i +mb · Sb +mm · Sm. (4)

2.4 Electric Motor
In this study, we consider in-wheel electric motors as movers. Since there is a direct mechanical link
between motors and wheels, assuming that each motor handles an equal amount of power, the output
power of every motor Pm,i can be computed as

Pm,i =

{
Preq,i

Nm,i
if Preq,i ≥ 0

rb,i ·
Preq,i

Nm,i
if Preq,i < 0

. (5)

In case of negative power requirement, we introduce a regenerative braking fraction that the electric
motor can exert via the rear axle of the vehicle without destabilizing the vehicle rb,i. Moreover, each
motor is bounded to not exceed its operational limits Pm,min and Pm,max, computed by scaling the
reference values:

Pm,i ∈
[
Pm,min, Pm,max

]
· Sm. (6)

Motor losses Pm,loss are computed by scaling a second-order polynomial approximation of the reference
motor losses Pm,loss derived from the quadratic approach used by [15]:

Pm,loss = P0(ω) + β(ω) · Pm + α(ω) · P 2
m,

where the parameters P0(ω), β(ω), and α(ω) are dependent on the motor speed ω and subject to identi-
fication. Considering the scaling factor Sm, the motor losses become

Pm,loss,i =

(
P0(ω) + β(ω) · Pm,i

Sm
+ α(ω) ·

P 2
m,i

S2
m

)
· Sm,
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yielding

Pm,loss,i = P0(ω) · Sm + β(ω) · Pm,i + α(ω) ·
P 2
m,i

Sm
.

Consequently, we can write the total input power Pdc,i as

Pdc,i = Nm,i (Pm,i + Pm,loss,i) = Nm,i

(
Pm,i + P0(ω) · Sm + β(ω) · Pm,i + α(ω) ·

P 2
m,i

Sm

)
. (7)

This approximation is particularly useful in this context since it allows to retain accuracy and complexity
without losing convexity. In fact, (7) can be relaxed to a convex second-order conic constraint, as it will
be shown in Section 3.1.

Figure 4: Electric motor efficiency map computed using the model (left) compared with data (right). We mirror
the efficiency for negative torques.

2.5 Battery
The power output of the batteries Pb,i is computed from the total motors’ input power Pdc,i, taking into
account the inverter efficiency ηinv, the battery modules’ multiplicity Nb,i, and auxiliaries consumption
Paux,i as follows:

Pb,i =

 1
Nb,i

·
(
Pdc,i

ηinv
+ Paux,i

)
if Pdc,i ≥ 0

1
Nb,i

· (ηinv · Pdc,i + Paux,i) if Pdc,i < 0
. (8)

Assuming that every battery module supplies an equal amount of output power, we approximate the
internal losses Ploss,b,i of each module with a quadratic function of the output power:

Pb,loss,i =
P 2
b,i

Psc,i
,

where the coefficient Psc,i is a measure of the efficiency of the battery. It has the dimensions of a power,
and it is called “Short Circuit Power” in reference to the power that would be released short-circuiting
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the battery. In turn, Psc,i depends on the battery energy Eb,i and the battery size Sb and, in line with
[15], can be expressed as

Psc,i = min
k

{ak · Eb,i + bk · Sb} , (9)

where ak and bk are the linear and constant coefficients, respectively, identified from a piecewise approx-
imation of the short circuit power curve as a function of the reference battery energy. Hence, for each
battery module, the internal power Pi,i can be expressed as

Pi,i = Pb,i +
P 2
b,i

Psc,i
. (10)

The internal power induces a variation of the battery energy Eb,i as

dEb,i

dt
= −Pi,i. (11)

The energy consumption of each battery module is the difference between the energy at the beginning of
the driving cycle Eb,i(0) and the energy remaining at its end Eb,i(T ). In order to get the overall energy
consumption in the drive cycle Econs,i we need to include the multiplicity factor:

Econs,i = Nb,i · (Eb,i(0)− Eb,i(T )) .

However, we consider each battery module’s energy to stay within operational limits, leading to

Eb,i ∈
[
Eb,max · ξmin, Eb,max · ξmax

]
· Sm, (12)

where ξ is the state of charge of a battery module and Eb,max is the maximum energy capacity of the
reference battery. To represent an average battery use during the cycle, we impose that the average
between the energy at the beginning of the cycle Eb,i(0) and at the end Eb,i(T ) must equal the mean
battery energy level:

Eb,i(0) + Eb,i(T ) = Sb (ξmax + ξmin) · Eb,max. (13)

2.6 Operational Costs
The costs of operation for each vehicle type Ji is estimated considering the overall energy consumption
during a lifetime of Ny years:

Ji = Ce · Econs,i ·
Ny ·Dyear

Dcycle
, (14)

where Dcycle and Dyear are the distance driven during the cycle and during one year, respectively,
whereas Ce is the mean cost of electric energy. We neglect maintenance costs as their influence is
two orders of magnitude smaller [16].

3 Problem formulation
In this section we formulate the concurrent design optimization as a convex second-order conic prob-
lem. Section 3.1 shows the lossless relaxation of non-convex constraints, while Section 3.2 introduces
performance constraints and Section 3.3 recalls the objective function before formulating the concur-
rent powertrain design problem as a second-order conic program. Finally, in Section 3.4 we discuss the
assumptions and limitations of our approach.

3.1 Constraints Relaxation
In order for the problem to be framed in a convex fashion, we need to relax constraints (5), (7), (8),
(9), and (10). Since our goal is to minimize the TCO, and consequently the energy consumption, these
constraints will always hold with equality, because it is suboptimal to assume any higher value than the
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strictly necessary. For the sake of brevity, we refrain from proving that these relaxations are lossless, as
the reason lies in the same principle. Therefore, (5) and (8) become

Pm,i ≥
Preq,i

Nm,i
(15)

Pm,i ≥ rb,i ·
Preq,i

Nm,i
(16)

Pb,i ≥
1

ηinv
· Pdc,i + Paux,i (17)

Pb,i ≥ ηinv · Pdc,i + Paux,i, (18)

whilst (7) and (10) can be expressed as second-order conic constraints [17] as(
Pdc,i

Nm,i
− Pm,i − Sm · P0(ω) + β(ω) · Pm,i

)
+

Sm

α(ω)
≥∥∥∥∥∥ 2 · Pm,i(

Pdc,i

Nm,i
− Pm,i − Sm · P0(ω) + β(ω) · Pm,i

)
− Sm

α(ω)

∥∥∥∥∥
2

, (19)

(Pi,i − Pb,i) + Psc,i ≥
∥∥∥∥ 2 · Pb,i

(Pi,i − Pb,i)− Psc,i

∥∥∥∥
2

. (20)

Finally, (9) is relaxed to a set of affine inequalities:

Psc,i ≤ min
k

{ak · Eb,i + bk · Sb} . (21)

3.2 Performance Constraints
In addition to constraints on the powertrain, we included performance constraints in contemplation of
comparisons with vehicles on the market. Thus, for each vehicle type we find, in order: acceleration
time, top speed, power gradability, torque gradability, and range constraints

Nm,i · Sm · tacc ≤
ωr · r2w,i ·mi

Tm,max

+
mi ·

(
v2f + ω2

r · r2w,i

)
2 · Pm,max

(22)

Nm,i · Sm · Pm,max ≥ 1

2
· ρ · cd,i ·Af,i · v3max (23)

Nm,i · Sm · Pm,max ≥ mi · g · vmin · sin(θmax) (24)

Nm,i · Sm · Tm,max ≥ mi · g · rw · sin(θmax) (25)

Eb,i(0)− Eb,i(T ) ≤ Nb,i · Sb · (ξmax + ξmin) · Eb,max ·
Dcycle

Drange
, (26)

where tacc is the maximum acceleration time from 0 to vf , vmax the top speed, Drange the minimum
range, vmin is the speed at which the vehicle shall be able to drive facing a slope of θmax, and Tm,max

is the maximum reference torque. It can be computed from the maximum reference power of the motor
and the rated speed ωr as

Tm,max =
Pm,max

ωr
.
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3.3 Objective Function and Problem Formulation
As the objective of the concurrent powertrain design problem, we select the sum of operational costs of
every vehicle in the fleet Jtot

Jtot =
I∑

i=1

(Nv,iJi) .

We state the cost-optimal sizing problem as follows:

Problem 1 (Concurrent Powertrain Design). Given a family of battery electric vehicles with a modular
powertrain as shown in Fig. 3, the optimal components’ sizes for the whole family are the solution of

min Jtot

s.t. Shared Constraints (1), (2)

Powertrain Constraints (3),(4),(6), (11)-(21) ∀i
Performance Constraints (22)-(26) ∀i

This problem can be framed as a second-order conic program and can be rapidly solved to global opti-
mality with standard algorithms.

3.4 Discussion
A few comments are in order. First, we scale the electric motor mass linearly as a function of the
maximum power. Second, we scale the battery size only by acting on the number of cells in parallel, thus
changing its energy without altering the battery voltage. These scaling methods are in line with high-
level modelling approaches and optimal sizing design problems. In fact, if the size is between 50% and
200% of the reference, the approximations are quite accurate [18]. Finally, it is important to underline
that, in our framework, the scaling factors are optimization variables, while the modules multiplicity are
given parameters. This limitation could be readily overcome by solving a sequence of problems in a
combinatorial manner, yet this is beyond the scope of the present paper.

4 Results
In this section we show the potential of our methodology with a numerical case study for a family
composed of two vehicles of different types: a city car and a compact car (with Nv,1 = 1, and Nv,2 = 1).
In our analysis, we consider the Class 3 Worldwide harmonized Light-duty vehicles Test Cycle (WLTC)
for the speed and acceleration trajectories, whilst vehicles and simulation parameters are provided in
Tables 1 and 3. We discretize Problem 1 using the Euler forward method with a sampling time of 1
s. Thereafter, we parse it with YALMIP [19] and solve it to global optimality with MOSEK [20], in
approximately 2 s.
Our results show that sizing powertrain components concurrently only causes an average increase of
the operation costs of 2.76% for the family, compared to the individual vehicle-tailored optimization.
It is expected that this value will be largely outperformed by the benefits derived from using a single
component shared by the entire product family [8]. The vehicle-specific increment of operational costs
is shown in detail in Fig. 5. Both approaches obtain similar results for the small city car, with a limited
variation of 0.41%, whilst the larger compact car shows a difference of 5.10%. This dissimilarity can be
ascribed to the fact that a shared module may be oversized for one of the vehicles to serve the whole fleet
at best. In particular, we find that the compact car carries a larger battery than required due to its minor
energy consumption compared to the city car. Nonetheless, for both vehicles, the increase of operational
cost is accompanied by an improvement in performance, such as a shorter acceleration time, an extended
range, or a higher top speed, as shown in Tables 4 and 5.
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Figure 5: Operational cost of two vehicles sharing powertrain modules: A city car (left) and a compact car (right).
The blue and the orange bars indicate the results attained with individual and concurrent optimization.

Table 1: Vehicles Parameters

Symbol City Car Compact Car Unit

Af 2.38 2.43 m2

rw 0.3498 0.3594 m
cd 0.29 0.23 −
cr 0.0174 0.008 −
ηinv 0.96 0.96 −
rb 0.7 0.6 −
m0 850 1250 kg
mb 138.6 kg
mm 81.6 kg

5 Conclusions
This paper explored product-family design for electric powertrain applications. We devised a concurrent
optimization framework to design powertrain components shared within a family of electric vehicles
equipped with in-wheel motors. Our framework can jointly optimize the operation of the individual ve-
hicles and the size of electric motors and battery, accounting for their multiplicity within each powertrain,
without requiring time-consuming iterative methods. Conversely, the convex problem format enabled us
to rapidly compute the globally optimal solution with off-the-shelf second-order conic programming al-
gorithms. Focusing on a two-vehicle family consisting of an urban car and a compact car, our case-study
revealed the potential of EVs: Compared to the case where the components are individually tailored to
each vehicle, concurrently designing shared components would increase the operational costs by less
than 3%.
This work opens the field for the following extensions: First, our initial results prompt a detailed eco-
nomical analysis of the benefits of product-family design for EVs in terms of horizontal leveraging and
economy-of-scale. Second, we would like to study different powertrain architectures and transmission
technologies. Finally, we are interested in jointly optimizing the multiplicity of component units within
each vehicle.
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Table 2: Minimum Performance Parameters

Symbol Value Unit

tacc 15 s
vf 100 km/h
vmax 130 km/h
vmin 10 km/h
θmax 10 deg
Drange 300 km

Table 3: Simulation Parameters

Symbol City Car Compact Car Unit

SOCmin 0.2 0.2 −
SOCmax 0.8 0.8 −
Nm 2 2 −
Nb 1 1 −
Paux 500 500 W
Dyear 20000 20000 km
Ny 5 5 years
Ce 0.36 0.36 EUR/MJ

Table 4: City car mass and performance

Performance Individual Opt. Concurrent Opt.

Mass 1431 kg 1448 kg
Range 300 km 300 km
Acceleration Time 14.5 s 11 s
Top Speed 198 km/h 217 km/h
Energy Usage 0.65 MJ/km 0.65 MJ/km

Table 5: Compact car mass and performance

Performance Individual Opt. Concurrent Opt.

Mass 1739 kg 1848 kg
Range 300 km 353 km
Acceleration Time 14 s 14 s
Top Speed 228 km/h 233 km/h
Energy Usage 0.53 MJ/km 0.56 MJ/km
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