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Executive Summary

Automated parking system (APS) is essential to an intelligent electric vehicle, especially for electric
vehicles (EVs) with wireless charging solutions using wireless power transfer (WPTS) technology. In
this study, the data generated by the onboard sensors and off-line simulation are used to improve the
parking performance. The upper-level motion planner learns the trajectory planned by nonlinear
programming. The lower-level trajectory-following control method combines model predictive control
and iterative learning control. The proposed method is tested in Simulink and high-fidelity CarSim
simulation and compared with the open-loop online planning method. The mean precisions of parking
position in the y-axis for one-layer open-loop control and double-layers control are 0.010 m and 0.016
m, respectively. And the parking time of the double-layer data-driven method is shorter than the open-
loop method. Moreover, the adaptability to the different initial positions, parking slot size, and road
conditions has been confirmed.

1 Introduction

1.1 Motivation

Automated parking system (APS) provides humans with greater mobility, productivity and leisure by
freeinﬁ_a driver’s parking maneuver operation [1, 2;. Owing to the sensors and actuators e%u_lpped on
the vehicle, APS usually performs better precision of parking position compared to a novice driver. The
high parking precision is beneficial to electric vehicles (EVs) with wireless charging solutions based on
near-field wireless gaower transfer (WPTS), where the power transfer efficiencies si%nificantly reduce
as the distances of the two sub-systems increase [|3]. Motion planning and_path-following control
modules in APSs are two decisive factors of the final precision of parking position. First, the planning
module generates parking path using methods such as the curve-based method [4], the sampling-base
method [5], and the search-based method [1]. Second, the Path is followed by the path-following control
module, which is usually derived from the vehicle model, such as linear quadratic regulator ?6], pure
pursuit [7], and model predictive control gMPC) [2]. The parking function has been realized in previous
research and some products. However, little research has been reported to reuse the historical data
generated by the onboard motion sensors in the vehicle and offline optimization calculation. These data
are valuable and contain beneficial system characteristics. APS provides an example of how the data
generated bg/ the vehicle can be used to improve the performance in terms of final precision of parking
position and parking time.

1.2 Related Work

Data-driven methods receive attention in planning and decision-making after their significant success
in the environmental perception of self-driving. Motion data were used to reduce the computational
complexity and to improve vehicle motion quality. The usage of motion data in motion planning can be
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divided into two categories: to guide conventional global path planners and act as local planners. In the
first category, Banzhaf [8] used a deeq_ convolutional neural network (CNN) to learn the poses
distribution and guide a bidirectional RRT* planner. Alois et al. [9]nused deep reinforcement learnin
(DRL) to speed up the search in A* planner. In the second category, the planning is usually reformulate
as a Markov decision process (MDPs), where the speed and steering angle are decision variables. Song
etal. [10, 11] proposed local online motion planning methods with low computational complexity base
on Monte Carlo tree search (MCTS). An online tree search method was used to generate fast open-loop
parking control signal. Xiong et al. [12] proposed an end-to-end DRL-based parking method using the
data collected on the driving simulator and the test platform. Other methods include directly mapping
the vehicle states with control command by learning the data with supervised learning [13, 14].

Although MCTS [10, 11] has realized the integrated planning and control, the lower layer of the motion
control frame used an open-loop control method that does not use the motion data. The speed response
lagged behind the commands. This work uses the MCTS-based parking in Song [10] and further
strengthens the system performance by |mpr0vmg11the trajectory-following ability. In principle, the
motion glanne_r is trained with the hypothesis that the planned trajectory can be precisely tracked. It is
reasonable to improve the consistency between the expected behavior given by the planning layer and
the practical trajectory-following performance of the control layer.

1.3 Contributions

The contributions of this work are twofold: First, a lower layer data-driven trajectory-following control
method strengthens the upper layer data-driven planning module. Simulation results reveal that a better
sgt_ae;d following performance is beneficial to the Parkl_ng time performance. Second, the generalization
ability of the proposed method to different initial positions, parkln% slot size, and road conditions has
been validated in high-fidelity CarSim simulation. That results show the potential of the proposed
n}ethod. It is expected to inspire studies exploring the advantages of data generated by the controlled
plant.

The rest of this paper is organized as follows: Section 2 introduces the preliminaries for the upper layer
motion planning and the lTower layer trajectory foIIowin? control method in the existing literature.
Section 3 introduces the proposed double-layer method. It is followed by results and conclusions in
Sections 4 and 5, respectively.

2 Preliminaries

2.1 Monte Carlo Tree Search

MCTS is an online planning method, which incrementally builds a search tree with a set of statistical
values on its edge [10]:

{P(s.a),N(s,a),W(s,a),Q(s,a)}, M

where P(s, a) is the probability of selecting action a at station s, N(s, a) is the number of sampling,
W (s,a) Is the total rewards, Q(s, @) is the value of action a at s. By sampling in action space, the actual
value is estimated by [15]:

Q(s,a) = N(i 2 Né)li(s,a)zi : ()

where Ié.) is used to count the number of selecting a at state s. As shown in Fig. 1, a search tree can be
obtained by performing four steps: selection, expansion, evaluation, and backup. With the increase of
sampling numbers, the estimated value gets closer to the actual value.
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Figure 1: Learnable Monte Carlo tree search (MCTYS)

A powerful formula to select the action in the first step of Fig. 1 is the predictor + upper confidence
bounds tree (PUCB). The action in the tree search is selected by maximizing a scalar:
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where ¢ is a constant to balance the exploration and exploitation, P(s, a) is obtained by a predictor, b is
the visited number of the parent node of action a.

a,(s) =argmax(Q(s,a) +cP(s,a)

2.2 Model Predictive Control

MPC solves a finite horizon open-loop optimal problem to obtain the control inputs. The optimization
problem should consider the system model and constrains [16]:

min Jw(EU)
Ui &iiSarr - -+ Sne
st. e = TGl ) k=0, N =1 4)
S EX
U, €y

where J is the cost function, Nc is the length of control inputs, N, is the number of prediction steps, Uk
is control input, ¢ is the system state, X is state space, and U is input space.

2.3 lterative Learning Control
Consider a system in state space:
X\, =AX, +B'U,

5
y', =C'X', ©
where superscript | stands for I-th control loop. Let x+1 = qx, the expression of x'x+1 can be obtained:
Xa=(a1-A)"U (6)
For j-th running:

yl Kk = P(q)uljk +C' (Al)k Xlo’ P(a) =C' (ql - A )718I (7

where the elements in P(q) are:

0O,m<k

P, =1C'B',m=k (8)

C'A_,..AB', ,m>k
Consider this form of ILC control law:
ulj+1,k =Q' (ulj,k + I-Ie;,k+1) 9)
where Q' is a filter, L' is learning matrix and e\ ., is control errors of j-th running at time k+1.
Quadratically optimal ILC (Q-type ILC) [17] is used to consider control errors and control effort, which
is expressed as:
J'=(e")Tee' +(U) R U +(5")'S 50" (10)
The solution is:
Q= (P TP +Rie +S.0) U +(PTT,oP +5,0)

o (11)
I T ToT
U =(P"TsP+Sc) P'T,

LG

where T, R, and S, are weights for tracking errors control input and run-to-run input increment.

3 Method

Although MCTS has been used in the automated parking system of our previous work [10], the planned
steering angle and speed commands were used to control the vehicle directly. In this work, we study the
influence of tracking control methods on the overall parking performance.

3.1 Overview




plan the reference ﬁarking trajectory associated with reference sPeed and steering angle commands in
the L_leé)el’ level. In the lower level, ILC and MPC control are used for the longitudinal and lateral aspects.
MCTS used the data of nonlinear programming to train the artificial neural networks in Song et al. [10]
without considering the speed and steering angle response characteristic of the vehicle. ILC uses the
data of the control plant to simplify the computation of MPC. The time delay in speed following is
compensated by using the speed errors collected on the test platform.
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Figure 2: Overall diagram of the parking motion planning and trajectory following control system

The iterative cycle of the E_roposed double-layers data-driven system is similar to Partial Motion
Planning [18], as shown in Fig. 3. MCTS performs online trajectory search with fixed time intervals.
The nearest partial trajectory in the tree is fed to trajectory following modular that uses MPC and ILC.
The reference point in the trajectory following modular is aligned in time spaces.
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Figure 3: Iterative cycle, the vehicle and parking space information is our root model that is different from [18]

3.2 Lower-level data-driven learning control

Unlike path planning methods, where the temporal information of the trajectory was usually ignored, and
the speed was assoclated with distance information [19], our ﬂlanner outputs trajectory points with times
stamp, as shown in Fig. 4. The advantage is that it regulates the speed controller if speed errors appear.
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Figure 4: Search in spatiotemporal space in MCTS
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Because the speed of parking is low, a single-track kinematic model is reasonable and is frequently used
to describe vehicle motion:

X cos(0)
y|=| sin(@) |v (12)
P tan(p)/ L

where (X, y) is the position of real axis midpoint, 6 is yaw angle, v is, ¢ is the steering wheel angle.
Writing state with x =(x, y,#), then the vehicle motion can be expressed with x = f (x,u) . Because the
reference trajectory x, = f(x,,u,) has been obtained by MCTS, the error model can be obtained by
subtraction:

0 0 —vsin(d,) |l x—x cos(6,) 0 Vv
X=|0 0 v,cos(@) | y-y, |+| sin@) 0 [5 5} (13)
00 0 0-6. | |tan(s,)/L v, /(Lcos*S,) '

If this error model is used in MPC, the speed and steering angle should be calculated. In order to reduce
the number of decision variables, the model is simplified as:

0 0 —v,sin(G,) || x—X, cos(6,) 0 .y
x=|0 0 v,.cos() || y-y, |+| sin,) 0 [ ' } (14)
00 0 0-0 | |tan(s,)/L v, /(Lcos*S,) '
by assuming that the speed can be well followed. The matrix form of the model is:
(k+1) = A X (k) + B, d(k) (15)

And the i-th coefficient matrices A , and B,

1 0 -vsin(6)T cos(6,)T 0
A.=|0 1 v.cos(g)T |» B, =| sin(g)T 0 . (16)
00 1 Ttan(s,)/L Tv, /(Lcos’(s,))

Both the trajectory following errors and input efforts can be considered, so a new variable
E(k|t) =[X(k |t),q(k —1|t)]" is added and the model is rewritten with:

Sk +1]t) = A (k) + B Ad(k 1), (k[ t) =C, ,&(kt) 17)
Finally, the prediction equation can be written as:
Y (t) =F.&(t) + ©,AU(t) (18)
with
n(k+1]t) CA Al(t[1) B . 0
k+2]|t S A? AG(t +1]t CAB .. 0
viy=| MO0 | | CAT | | A0EHLID | o | CAB, |
n(k+ N, [t) CAM Ad(t+N, |t) CA™1, .. CAM™g
- A, Bl ~ Bei | «
Ak,t:|:0 t Ikt 'Bk,tz Ikt 'Ck,tz[ck,tio]a (19)

where the coefficient matrixes in the model are simplified and assumed to equal.
A.=AB,=B.k=02.,N, -1 (20)

The constraints should be considered in the calculation of the control law. We consider the limits of
front-wheel angle, and its change rate in this work:
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Uyin C+K) <u(t+k)<u,, (t+Kk),Au;, (t+K) <Au(t+k)<Au,, (t+k), (21)
which can be written in matrix form:
Unn — U, <AAU, <U_ . —U, AU, <AU, <AU_.. (22)
with
uk -1 10 ..0 I, 0 .. O
u(k -1 11 .. 0 | | .. 0
U =1, ®uk-1)= ( ),A= ®l, =" " . (23)
u(k -1) 111 1], .. P e e
And
Aumin Aumin
Aumin Aumin
AU . =1,.®Au = AU =1 ®AU = ) (24)
Aumin Aumin
The final control law of MPC is
[AU, £]'[@: QO ,][AU, £] + 2[AU, £]®: Q¥,& (25)
subject to
AUmax_Ut
A 0 0
AU, g]" < JL., e]<[AU, €] <[U,, €]. 26
{_A O}[ I's| yu ey, [T el<I80.c]<[U, 2] (26)

0

3.3 Speed compensating

As mentioned above, ILC is used to improve the longitudinal control performance of the vehicle. First,
the linear system of the speed control is identified to obtain A', B', C'in longitudinal linearized system Eq.
(5). Second, the matrix P is calculated by Eq. (8). Then, the learning matrix L'and filter matrix Q' are
obtained by Eqg. (11). Equation (9) is used as a speed control law. The errors are calculated by:

& | | Var| | Yia

| |
ej,Z _ y:i,Z _ yj,2 (27)
te,N ytIJ,N yIj,N
where yq is the desired signal, y; is the measured signal.

The parallel parking process can be divided into two phases: park-in and shuttling in the parking
spaces.Because the trajectory in the second phase is sensitive to the final poses of the park-in stage, the
trajectory is used in the first sta%e, and ?en-loop control is used to adjust the parking space. The error
signals of speed control should be stored. To ensure the learned experience can be used in other initial
poses, we divide the parking-in stage into acceleration and deceleration phases, as shown in Fig. 5. When
the errors experience of the acceleration is running out but the desired speed does not decrease, the last
errors of the acceleration phase will be used. In other cases, if the desired speed decrease in advance, the
pointer will jump to the deceleration phase.

EVS35 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium



S
)

Acccle&ation phase planned speed

Deceleration phase—>1

Speed /m/s
s & &
=) - N <

s
=]
:

-1 ‘ :
0 2 4 6 8 10 12

Time /s

Figure 5: Phases of the speed during the parking

4 Comparison of test and simulation

The objective of the experiments is to confirm the effectiveness of the lower-level data-driven trajectory
following the control method and to study the adaptivity of the proposed double-layers parking method
to different work conditions.

4.1 Test conditions

The test is carried out in Simulink and CarSim. The planning period is 50 ms, the period of the trajector?/
following control is 5 ms. The parameters of the up-layer motion planner are the same as Song et al.
[10]. The parameters of the vehicle and lower-layer control are listed in Table 1.

Table 1: Vehicle and controller parameters

Item Value Item Value
Vehicle length 3.569 m Front overhang 0.72m
Vehicle width 1.551m Rear overhang 0.54m

Wheelbase 2.305m Trans. ratio 16.68
Vehicle length 3.569 m Front overhang 0.72m
Steering -MPC 400 °/s Q weight -MPC diag(1, 0.1, 2)

Prediction -MPC 20 steps R weight-MPC 1.5%Inc

Control -MPC 15 steps Te-LOR 1 x Inxn
Relaxation -MPC 5 Ris-LQR 0.1x Inxn
SLG -LQR O.le |N><N

As shown in Fig. 6, the initial E)arking poses are distributed in x = [1.7 m, 3.7 m%ﬁy =[1.25m, 2.25 m]
with zeros initial angle. The values are determined using parking standard ISO-16787. The data to learn
the lower-level longitudinal control law is obtained in the position of the red circle in Fig. 6. To save the
comf)uter memory consumption and test the ?enerallzatlon ability, we used only one pose to learn lower-
Ieve(zj. To sum up, the learning of the upper-level layer used 25 poses. Moreover, the lower-level layer
used one pose.
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Figure 6: Initinal positions of traning in the double-layers data driven method, where the the data in circles are
used in motion planning layers and red circle is used to learn speed compensate

4.2 Results on training positions - verification of lower layer

The method without lower-level trajectory tracking is denoted as MCTS. MCTS+ILC+MPC denotes
the double-layer method. The planners of both MCTS and MCTS+ILC+MPC are trained using 25 data
in the poses in Fig. 6. Speed-following and trajectory-following errors at an arbitrary pose are shown in
Figs. 7-8 to confirm the benefit of the lower-level trajectory-following method. The error of motion
control is reduced after adding the tracking module. On the one hand, the reason is that in the
longitudinal direction, ILC used the Iearnin? experience to take the historical error as a feedforward to
compensate for the output speed of MPC. In addition, MPC performed tracking control in the lateral
direction according to the pose feedback. The phenomenon in Fig. 8 is similar to that in Fig. 7. The
tracking error fluctuates in the time domain. The reason is that although there is a low-pass filter matrix
Q in the control rate of ILC, the vehicle speed error is collected according to the discrete period.

0.15
‘ -]
X:8.85
Y:0.1255
']
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Figure 7: Comparsion of speed following errors at (1.7 m, 1.25 m, 0°)
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Figure 8: Comparsion of trajectory-following control errors at (1.7 m, 1.25 m, 0°): (a) x-coordinate; (b) y-
coordinate, and (c) 6

Table 2 shows the speed following errors, trajectory errors, and the time spent in the whole process of
25 parking times. In terms of speed errors, although the standard deviation increases, the mean,

maximlum, and mean square values of speed error of single parking are reduced after adding tracking
control.

Table 2: Statistical results of parking process in the training poses, 25 trials

Open loop With tracking
Mean Std Mean Std
Mean 0.06 0.00 0.03 0.01
Speed errors/ m/s MSE 0.003 0.000 0.001 0.004
Maximum 0.13 0.001 0.11 0.08
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Mean 6.170 0.41 2.67 1.48

X errors/ % MSE 27.43 0.92 10.62 25.16
Maximum 13.07 0.12 10.12 6.40

Time/ s / 10.02 0.66 0.88 0.76

As the direction of the motions in the parking space changes frequently, trajectory following is only
used out the parking space. The comparison of open-loop control and double-layer planning and control
method is shown in Fig. 9. In 23 cases out of 25, the proposed method's parking time is shorter than
open-loop control. That confirms the effectiveness of lower-level trajectory-following control.
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Figure 9: Motion time of parking in different initial positions

The speed at pose four is also shown in Fég. 10, where sudden deceleration is avoided by adding the
lower-level control method. In previous studies, open-loop planning and control are shown to be feasible.
The learning compensation in ILC speed following further improved the overall performance.
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Figure 10: Speed order and response at pose [3.2 m, 1.25 m]: (a) without following control; (b) with following

control

The results of final position accuracy and parking process are shown in Table 3, where the effective rate
is defined as the percentage of faster parking trials obtained by the tracking layer among the 25 positions.
It can be seen that the average y-axis errors of double-layers parking are almost the same with one-layer
open-loop control. The tracking layer reduces parking time of 72% of the initial position at the expense of
higher y-axis errors and standard deviation. It indicates that up-layer online planning is important to the
high and stable position precision. With a more complex planning and control structure in our case, the
worst performance increases.

Table 3: Final parking results of position accuracy and parking process, 25> trials

Item Open-loop  With tracking

Mean 0.010 0.016

Y errors/ m Mf_ix 0.055 0.114

Min 9.79e-05 0.003

Std. 0.015 0.023

Mean 1.137 1.185

0 errors) © ng 1.318 1.327

Min 0.984 1.013

Std. 0.091 0.090

Gear Mean 2.00 2.00
Changes Max 2 2
times Min 2 2
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Std. 0.00 0.00

Mean 16.904 16.9
Time/ s Std. 0.715 1.11
Effective rate 2%

4.3 Adaptability to different initial positions - verification of upper layer

The motion planning policy is tested by changing the initial vehicle angle from 0 to [-8°, 8°]. The results
of the parking paths are shown in Fig. 11, where the requirements of safety are satisfied, and the final
bounding boxes of the vehicle are in the parking spaces.

¥/ m

Figure 11: Parking trajectories when change the initial angle of vehicle from 0° to [-8°, 8°] at (2.7 m, 1.75 m)

4.4  Adaptability to different sizes of slots

To further test the adaptability of the proposed double-layer date-driven parking method, we changed
the length of the slots. The proposed system learned at parking space with a length of 4.57 m. The results
are shown in Fig. 12. The final angles of the vehicle are 1.186°, 1.095°, 1.133°, and 3.537°, respectively.
The parking task is succeeded except for the smallest parking space, where the parking time is more
than 50 seconds set in the experiment. The adaptability to different slots has been confirmed.
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Figure 12: Parking trajectories uing same model and parameters with different parking slot length: (a) 4.57 m;
(b) 4.37 m; (c) 4.17 m; (d) 4.07 m

4.5 Adaptability to different road conditions

The road friction coefficient is 0.85 in the data collection stage of ILC speed control. The friction is
reduced to test the adaptability to different road conditions. Figure 13 shows the speed response and the
parking trajectories with different road friction. It can be seen that the measured speed in the different
roads is different. As the parking speed is low, the difference in the trajectories with friction coefficients
above 0.05 is small. The friction of 0.05 is too small to provide enough driving force. It also shows that
the response lag in the deceleration could not be completely avoided. The delay comes from the
recognition of the deceleration stage in Fig. 5.
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Figure 13: (a) Speed response, and (b) parking trajectories with different road friction 0.1-0.85, without 0.05

5 Conclusions

A method of double-layer data-driven motion planning and control for parallel parking is proposed in
this work. Although the one-layer open-loop integrated planning and control method has been
Brewqu_sl confirmed. The lower layer trajectory-following method with speed compensating is

eneficial to the parking time performance and avoid sudden deceleration at the expense of higher y-
axis errors. The mean precisions of parkmg position in the y-axis for one-layer open-loop control and
double-layers control are 0.010 m and 0.016 m, respectively. Moreover, the generalization ability of the
proposed method is confirmed. In the future, we will apply the proposed method to more complex
driving scenes, where a physical model is hard to obtain.
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