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Executive Summary

The uptake of electric vehicles (EVs) may pose a challenge to power distribution networks (PDNs).
While smart charging can be deployed to optimize charging regarding different objectives, it can exacer-
bate peak power demand due to synchronization. We assess the charging demand emerging from a large
fleet of EVs, with models for the decision to charge and distribution of the steady-state state-of-charge.
These are applied to the municipality of Frederiksberg, Denmark, using data from the national travel
survey. Home and workplace charging is mapped to the PDN considering different behaviours and de-
grees of synchronization. Results indicate that the likelihood of severe congestion in the medium voltage
PDN is low, and that it can be attributed to rare scenarios in which high synchronization is observed,
particularly when maintaining the normal steady-state demand. Despite the low likelihood, preventive
measures should be devised to mitigate such scenarios, especially if additional high-power consumers
are connected.

Keywords: charging, demand, energy network, EV, simulation

1 Introduction

Electrification of road transport, particularly personal vehicle utilization, has been identified as an impor-
tant means to address the global challenge of reducing carbon emissions [[1]. The growth of EV market
share has stimulated extensive research on the analysis of the impact of uncontrolled charging in PDNs
and in the use of smart charging to mitigate this risk [2, 3, 4]. However, recent studies show that the co-
incidence factor (CF) of uncontrolled charging with increasing fleet size and charging power is expected
to be rather low, typically less than 25% [3!16]. In contrast, little attention has been dedicated to the
analysis of unintended consequences of smart charging, namely the risks posed by the synchronization
of charging to external signals, such as electricity price variations, carbon emission minimization, or
the provision of ancillary services. Existing literature [7, 8] indicates that cost minimization could be a
driving force for undesirable synchronization effects in home charging.

In this paper, we address the potential impact of charging synchronization by comparing different EV
charging scenarios, where smart charging is considered for home and workplace charging due to the
high EV flexibility potential associated with such charging events [9]]. Five base scenarios S; for EV
charging are devised to analyse the impact of a fully electrified fleet of personal vehicles on a real
medium voltage PDN, namely: .S7) uncontrolled non-daily charging, S3) uncontrolled daily charging,
S3) time-synchronized non-daily charging, S4) time-synchronized daily charging, and S5) time-and day-
synchronized non-daily charging. The first and second scenarios concern unconstrained charging, in
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which no management is imposed on the charging process and the EVs charge upon arrival. S; sets a
baseline for the charging demand, in which drivers charge de with a mean interval of d,, days, according

to the decision model and steady-state demand introduced in Ref. [10]. In this scenario, only a subset of
EVs charge on a given day, as determined by the aforementioned decision model. In contrast, Sy probes

the impact of satisfying the energy demand on a daily basis, i.e. charging de/d, every day. The impact

of smart charging coordination at a specific time of the day is addressed in the remaining scenarios. Sce-
narios S3 and .Sy are defined as Sy and Ss, but charging 1s only allowed to start, if altogether possible,
after the coordination signal time. Finally, S5 simulates an extreme demand case, where all EVs must
charge their steady-state demand Je on the same day.

This paper focuses its analysis on the municipality of Frederiksberg, the inner part of the metropolitan
area of the city of Copenhagen (Denmark). Due to its high population density and heterogeneous combi-
nation of charging demand, it is a good case study for assessing the impact of EV adoption on the power
grid in the urban context. This municipality is currently part of a comprehensive project, FUSE [11]],
dedicated to analyse the impacts of the electrification of private road transport, both from the perspec-
tive of transport demand and from the power grid supply standpoint. By combining real data from user
behaviour, baseline power consumption in the PDN, and its topology, we offer a practical approach to
analyse power grid utilization in real-world scenarios. This approach addresses the lack of real-world
case studies that consider simultaneously the transportation and power distribution perspectives [12],
and aims at assisting distribution system operators (DSOs) to understand the potential impact of high
charging synchronization in urban areas.

The subsequent parts of this paper are organized as _follows: Section [2] provides an overview of the
methodology introduced in this paper; Sections [3|and [4] present and discuss the key findings; and finally,
conclusions are addressed in Section

2 Methodology

An overview of the methodology of this paper is illustrated in Fig. [[] and consists of five steps, to be
discussed in the following. The different steps are highlighted by large rectangles ranging from light to

dark green.
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Figure 1: Methodology of the paper to derive the impact of different charging strategies on the power distribution
network of Frederiksberg. While dark grey shaded rhomboids indicate the input data, grey shaded shapes represent
the external parameter. The light grey shaded hexagon indicates external models used in this work. White
shaded rectangles illustrate results obtained in each step of the process.
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2.1 Power distribution network modelling

The modelling software to analyse the PDN in Frederiksberg makes use of the Python package Pan-
dapower. This package allows for a straightforward representation of the 10 kV PDN of Frederiksberg
to simulate the power flow in the respective infrastructure. For the purpose of this paper, we focus the
analysis on the 10/0.4 kV transformers and the respective feeding underground cables. The power grid
network topology is defined based on data collected from the DSO for this area, Radius, which provided
the location and characteristics of its transformers and respective cables. In normal operation, the PDN of
Frederiksberg is divided into three independent networks, labelled FRBi7 with i={1, 2, 3}, as depicted in
Fig.[2] Each PDN has its own main station 30/10 kV coupled to multiple feeders connecting the respec-
tive transformers. Additional connections between the PDNs exist, which can be deployed as tie-lines to
connect the transformers in contingency scenarios. In this work, we only consider normal operation in
which the three PDNs are operated independently.

A brief description of the PDNs’ main characteristics is given in Tab. [1} and the layout is illustrated in
the left part of Fig. 2] In the right part of Fig.[2] we identify the areas of Frederiksberg that are primarily
dedicated to workplace parking and private residential housing areas. It is worth noting the reduced
density of transformers in areas associated with the latter. A detailed description of the mapping of home
and workplace charging, based on the identified zones, is presented in Sectlon(@ Both p{)ots are shown
on the footprint of Frederiksberg municipality, with grey lines indicating roads and walking paths, and
buildings represented in light blue colour.

Table 1: Summary of the power distribution network infrastructure in Frederiksberg. For each FRBi, there are N},
transformers, connected to N} cables covering a total length L.

FRBi N;. N! LI (km)
1 152 222 934

2 98 157 60.0
3 34 61 19.9

Ay
BT
Y

2

Figure 2: Visualization of the power distribution network topology (left) and distribution of zone types (right) in
Frederiksberg. The 10/0.4 kV transformers are mapped to the respective PDN by colour coding, with red, blue, and
black solid dots representing FRB ¢ ={1,2,3} while the underground cables for all PDNs are shown in green. On
the right, the residential housing areas with predominantly single-family/row houses are highlighted with a yellow
shade and the primary workplace parking areas are represented in purple shade.

2.2 EV charging modelling

The evaluation of the daily EV demand is based on two pillars. Firstly, travel records (private car trips
only) from the Danish national travel survey in the years 2006 — 2019 [13]]. Secondly, on the models for
the decision to charge and steady-state state-of-charge distributions introduced in Ref. [[10].

From the travel survey, we collect all travel records for private car utilization that visit Frederiksberg
at least once, which define a pool of donor of representative travel records. Since the travel survey
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samples yearly a small fraction of the population, each record includes a calibration factor \ that ensures
a representative picture of the population in each year. We make use of this calibration factor to generate
an expanded pool of travel records, such that each donor record spawns | A| records in the expanded
pool. In this process, we utilize origin-destination traffic matrices to introduce random variation to the
location of each activity in the expanded pool of records, while still preserving the traffic patterns. By
making use of the information available, we characterize the records Ey home residency and workplace
municipalities, the parking conditions and the type of day. The travel survey does not indicate the specific
day for each record, rather it identifies the respective type of day. Normal weekdays, defined as Monday
to Thursday where the next day is not a holiday or special day, comprise the bulk of the travel records,
approximately 57.4% of all records. The next largest subset of records concerns Fridays or weekdays

prior to holidays, accounting for approximately 14.6%. The remaining groups contain even smaller
shares of donor pool, making these to susceptible to non-representative variations from outlier records.
Therefore, we restrict our analysis to travel records from the largest group.

In addition, we leverage the data on parking conditions at home and work to identify the potential access
to home and workplace charging, which we use to categorize the records into non—overlaﬁping subgroups,
as depicted in Fig. [3] Given the scarcity of records for EVs in the travel survey, we make use of records
from vehicles with conventional drive-trains. For each record, we attribute a battery capacity based on
a review of new EV specifications, assuming a fleet with a mean capacity of 68 kWh with a standard
deviation of 18 kWh and set the mean rate of conversion for all records at 7 = 0.2 kWh/km.

The models introduced in Ref. [10] are then used to determine the required energy to meet travel require-
ments O, the probability of charging at a given day pg, the mean interval between charging events d,,, as

well as the steady-state demand for each charging scenario.

2.2.1 Classification of travel records

The distribution of the charging events is determined by a hierarchical filtering process, based on the
parking conditions at home and work, as well as the travel diaries details, as depicted in Fig. [3| To begin
with, we segregate the records according to the residency municipality to identify the share of charging
events from residents and the demand emerging from visitors. The visitors comprise any person that
at any point in their travel record drives into the selected municipality. Then, we start the hierarchical
filtering process. First, we assess the parking conditions at home. For those with reliable access to
parking at their premises or on/next to the property, we infer that home charging will be available to such

drivers, i.e. parking conditions matching codes {4,5,6,111,112,131, 132} in the travel survey [13]. If

the travel records indicate that the vehicle returns home on that day, we attribute the demand from this
record to home charging. Second, remaining records are then screened for parking conditions at work,
namely work parking codes {1,2,3,11,12} [13]. By the same token, we attribute workplace charging
if the travel records indicate a visit to the workplace on that day. Since the workplace municipality can
be different from the residency, we account for the contribution inside and outside Frederiksberg. The
remaining demand is assigned to charging using the public infrastructure and is exempt from our impact
analysis within this work. It is worth noting that we are likely overestimating the penetration of home
and workplace charging, by assuming that everyone who has conditions to have a charger, will install
one. Hence, the results shown in this paper should be interpreted as upper bounds to the share of charging
demand met at home and the workplace.

2.2.2 Energy demand

Even though the market share of EVs in Denmark remains low so far [[14]], for the purpose of this paper,
we consider an ambitious scenario of full electrification of the private passenger cars fleet of the year
2020, i.e. 24252 cars [[15]. Assuming a homogeneous distribution of EVs at the national level and
present day traffic patterns, we should expect in this scenario that the total number of EVs transiting
in Frederiksberg daily reaches N; = N, + N, = 59070, where N, = 24252 and N, = 34818 are
the number of EVs from residents and visitors, respectively. To ensure a representative load profile, we
randomly sample travel records for each day in the power flow simulation, collecting V, residents and
N, visitors. We collect travel records for 40 weekdays of peak loading, to be discussed in more detail in
Section

Based on this set of records, we run the five above-mentioned charging scenarios. In scenarios 57 and
S3, the number of charging events is determined by the probability p,; of each EV charging on a given
day, as defined in Ref. [[10]. For the purpose of this paper, we draw a random number from a uniform
distribution in the interval » € [0, 1] and define the acceptance criteria for the decision to charge as
r < pg. Consequently, the number of charging events in said scenarios is stochastic in nature and smaller
than the number of events in the remaining scenarios. Conversely, in the remaining scenarios, we observe
as many charging events as records matching the filtering criteria depicted in Fig.

A summary of the maximum number of home Ny and workplace Ny charging events and the respective
charged energy is presented in Tab. 2| where the total charging demand for j charging events at the
location X for S7, S3, S5 is defined as Ex = Zj 0¢; and for Sp and Sy as Ex = Zj dej/dp.
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Figure 3: Representation of the segmentation of travel records according to residency and workplace municipality,
as well as the parking conditions at the respective locations.

Table 2: Maximum number of charging events and respective energy demand per day during the simulation time
span. Results are segregated by home and workplace charging for each scenario under consideration.

S, S Sy Sy S5
Ng 2793 12686 2793 12686 12686
Nw 867 3089 867 3089 3089
Ey (MWh) 684 812 684 812 3505
Ew (MWh) 212 261 212 261 834

Having identified the EV demand and number of charging events for each scenario, we will now focus
our attention on the simulation of the charging events.

2.2.3 Simulation of charging events

In this paper, we are interested in the power grid impact of normal AC charging. Recently released EV
models are converging towards supporting 11 kW AC charging, in line with the most common configura-
tion of normal charging stations in Denmark. We frame our analysis assuming a large EV fleet capable of
fully utilizing this type of infrastructure. Hence, throughout this paper we consider the charging power to
be 11 kW, regardless of the scenario under analysis and the EV’s state-of-charge. Therefore, the charging
duration is determined by dividing the required energy by the constant charging power.

Given the daily variation of demand on the PDN, we consider different scenarios for smart charging
according to a broadcasting control signal or a common objective. For home charging, we consider two
sub-scenarios, namely a and b. In sub-scenario a the control signal delays the start of charging until
midnight, i.e. 24:00 (00:00 of the next day), whereas sub-scenario b delays charging until 18:00. During
working hours, we consider only one synchronization control signal that takes place at 10:00 and affects
only vehicles charging at the workplace. Therefore, the start of charging at a location X is defined as

ts,x = max(t. x,tq x), Where t. x is the synchronization control signal time (for uncontrolled charging
in Sq and S we set t. x = 00:00) and ¢, x is the arrival time at the location. When travel records

include multiple visits to home or workplace, we select the arrival time as follows: for home charging
we consider the last arrival, whereas for workplace we take the first. Vehicles visiting the home location
during the day, but not terminating the day at home, are exempted from the synchronization and start
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charging immediately upon arrival.

Regarding smart charging, we consider two strategies. The first encompasses the synchronization of
charging to a specific time of the day, where the decision to charge is stochastic for S3, based on the
probability of charging p,, and forced to daily charging in S4. The second strategy concerns synchro-
nization of charging to a specific day and time, where we consider all records regardless of pgy. The
strategies are labelled as T.S. for time-synchronized and as T.D.S for time- and day-synchronized, with
the latter being used in S5 only. A final set of labels is introduced to distinguish home from workplace
charging strategies, namely H{ and W;, as the sub-scenarios a and b only apply to home charging. A
summary of the configuration of each scenario can be found in Tab.[3] Charging events are simulated over
a period of 24h in 15 min resolution starting at 05:00 on the given day to be able to both capture early
charging at work and late charging at home without compromising capturing the majority of EV demand
throughout one day. Furthermore, it is worth noting that some records encompasses parking durations
that are insufficient to fully charge the EV. While scarce and mostly affecting workplace charging, our
simulations force vehicles to complete charging.

Table 3: Summary of the characteristics of each charging scenario S;, including sub-scenarios a and b, as well as
H; and ;. The non-daily (n.d.) charging demand d¢ is defined as the required energy according to the steady-state
model, whereas the daily demand is de/ d,, as introduced in the definition of .S;.

S1 So S34 S3p Sia Sap S5q Ssb
Hy, Wy Ho,Wo H3zq, W3 H3p, W3  Hyo, Wy Huap,Wy Hsq, W5 Hsp, W5
pattern n.d. daily n.d. n.d. daily daily n.d. n.d.
control none none T.S. T.S. T.S. T.S. T.D.S. T.D.S.
te.H none none 24:00 18:00 24:00 18:00 24:00 18:00

tew none none 10:00 10:00 10:00 10:00 10:00 10:00

2.3 Allocation of charging events to the power distribution network

Having modelled the PDN topology as discussed in Section [2. 1| with its tripartite nature, we now have to
allocate the charging events to the different transformers. The PDNs under consideration contain mul-
tiple classes of transformers, ranging from public to private (owned by consumers) and finally reserve.
For the purpose of our simulations, we only allocate charging events to transformers from the public
infrastructure. The remaining transformers are accounted for in the simulation, but no additional EV
load is added. The distribution of charging events also accounts for the type of housing associated with
home charging, such that private home charging is mapped to single-family/row house infrastructure and
shared home charging is associated with denser housing infrastructure, e.g. apartment blocks.

The allocation procedure can be summarized in four broad steps. First, we divide home charging events
according to the type of charging infrastructure used, i.e. private or shared. Based on customer type
data provided by the DSO, we infer that the number of daily private home charging events during one
day in S9, Sy, and S5 equates roughly to 80% of the total number of detached houses in Frederiksberg,
from which we derive the ratio between private and shared home charging. For S; and S3 the number of
private home charging events is reduced bfy the ratio between the total number of home charging events
in Ss, Sy, and S5 and the total number of home charging events in S7 and S3. In the second step, we
consider the allocation of private home charging events. The respective charging events are distributed
to the transformers that supply residential zones with predominantly single-family or row houses. This
attribution is based on the overlap of single-family housing zones (including a vicinity buffer) and the
location of the transformers, with the number of events being proportional to the relative size of the
respective housing zone. The third step concerns the allocation of shared home charging. The amount
of charging events for shared charging is calculated as the difference between total and private home
charging events. These are then equally distributed to all transformers, that do not supply aforementioned
single-family housing zones. The fourth step handles the allocation of the load from workplace charging.
It begins with the identification of transformers that can supply this load, based on the locations of
workplace parking lots near company or institution offices and other intensive labour locations. This part
of the procedure relies on public data collected from OpenStreetMap. Workplace charging events are
then allocated to the nearest transformers using the shortest path between the transformer and respective
location, according to the real road and public walking paths in Frederiksberg. Finally, it is important to
note that the allocation procedure has to be repeated for each simulation scenario and simulated day, as
the number of charging events is dependent on the configuration of each scenario and sampled records.
A summary of the maximum number of charging events allocated to each of the three PDNs is d(j,fpicted
in Tab. 4] In addition, we observe that the amount of charging events allocated to a single transformer
in scenarios S; and S3 lies in the following ranges: 2 to 25 for private home, 11 to 12 for shared home,
and 18 to 19 for workplace charging events. In scenarios Sy, S4 and S5 the number of events increases
considerably, but private home continues to exhibit the largest interval and shared and workplace exhibit
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minimal variation as in the other scenarios. The respective ranges read: 11 to 108 private home, 51 to 52
shared home, and 65 to 66 workplace charging events.

Table 4: Summary of charging events allocation in the FRB7 networks. We list the maximum number of events
allocated to private home N (l?p, shared home N 1(;)3 ,, and workplace IV, 53 charging.

1 1 1 2 2 2 3 3 3
Ny Niww N Nipy N NN, Ny, Ny

S1, 53¢ -5 275 1312 480 21 821 313 11 353 74
Sa, S4q - Ssp 1244 5953 1710 95 3734 1116 54 1606 263

2.4 Power flow simulation and reinforcement cost calculation

The power flow simulation is a computationally demanding problem to solve. Since the PDN needs to be
properly dimensioned for the days of highest loading, we make use of the provided power consumption
data of the year 2020 to select all days in which at least one transformer experience its maximum loading.
Based on this criterion, we identify a total number of 67 days of high load, which fall within the periods
Jan-Mar and Aug-Dec. Furthermore, as discussed in Section we consider only normal weekdays, by
this token the size of the identified pool is further reduced to 40. By focusing on this reduced sample, we
are able to effectively reduce the computational load and analyse multiple EV charging scenarios.

To be able to assess the EV impact on the PDNs, both in terms of voltage deviations and transformer
and cable overloading, the provided baseload and estimated EV load are aggregated for each transformer
within the networks. The baseload data for each transformer is only available in hourly resolution. Hence,
we make use of cubic interpolation to infer the load in a 15 min timescale. Moreover, as previousl
mentioned, the EV demand is modelled for a period of 24h starting at 05:00 on the given day of pea
load. Thus, the baseload of the PDNs is chosen accordingly within the same period. While the baseload
varies according to the day, the estimated EV load also exhibits variation for each day due to the sampling,
as discussed in each Section It is worth noting that the reactive power of EV charging is neglected
within this work. Finally, the Newton-Raphson method is used for the power flow simulation of each
selected day in 15-min resolution.

To assess the reinforcements cost associated with the overloading of transformer and cables observed
in our simulations, we assume a typical cost of 133 k€/km for cable and 21.64 k€ for transformer
replacements, as used in Refs. [[16,[17].

3 Results

Having discussed the methodology of the I[])aﬁer, this section is dedicated to the main results of our
work. Here, we address the findings for both the EV and aggregated demand, as well as the power flow
simulation.

3.1 EV demand and aggregated power consumption

To begin with, we focus on the estimated EV demand and aggregated power consumption for Frederiks-
berg. This estimate serves as an input to the power flow simulations. Fig. @‘illustrates the aggregated
EV demand over the course of 24h and associated CF, defined as the ratio of the simultaneous maximum
demand over the maximum demand capacity of EVs using home and workplace charging, respectively.
By comparing home charging scenarios a and b, it can be seen that charging synchronization at midnight
leads to a significant higher peak load compared to synchronizing at 18:00, as the majority of EVs arrived
at home and charge at the same time. While for ¢ a maximum CF of 94.8% is observed, this decreases
significantly to 58.7% in b, with a similar variation in the maximum peak power demand, respectively
131.7 and 81.6 MW. Furthermore, the time of synchronization also has an impact on the magnitude of
experienced peak load between S4 and S5. While synchronization at midnight leads to similar peak
loads in both scenarios, the peak load in S5 is notable higher when considering synchronization time
18:00 due to longer charging durations. A summary of the time and scale of maximum peak load and
maximum CF is provided in Tab. [5] Comparing the results to existing literature, the CF in H; and Hu, is
similar to results from Ref. [6], which estimates the CF of a fleet of 10000 EVs to be 9% for non-daily
uncontrolled charging, and 83% for daily price-responsive charging starting at 22:00.

The aggregated apparent power demand for Frederiksberg is illustrated in Fig. [5] For scenarios S; - Ss,
an increase in peak load of less than 32% is experienced. In contrast, the peak load increases by roughly
183%, 100%, 215% and 157% in S44, S, S5, and Sk, respectively. Thus, charging synchronization of
a large fleet of EVs at midnight could cause higher concerns compared to the synchronization at 18.00
where the EV load coincides with the baseload of the system.
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Figure 4: Overview of the aggregated EV demand at home (upper left) and work (lower left), and the coincidence
factor of home (upper right) and workplace charging (lower right) for each charging scenario. Average, minimum,
and maximum values for the 40 demand profiles are illustrated by solid, dashed and dotted lines respectively.

Table 5: Summary of the aggregated EV peak power demand for each charging scenario, decomposed according
to home and workplace contributions. We list its magnitude Py, time ¢, and coincidence factor C Fi, .

Pmax (MW) tmax CFI'H&X (%)

H, 116 19:15 8.5
H, 16.9 18:30 12.4
Hs, 28.6 00:30 21.0
Hsy, 18.0 19:00 13.1
Hya 116.8 24:00 83.7
Hy, 50.4 18:00 36.5
Hs, 1317 00:30 94.8
Hs, 81.6 19:30 58.7
1% 53 10:00 16.8
Wo 9.1 09:00 27.0
W 7.6 10:15 23.9
Wy 26.6 10:00 79.8
W 28.9 10:15 86.2

3.2 Power distribution network impact and reinforcement costs

The EV impact on the PDNs of Frederiksberg is evaluated with respect to bus voltages and the loading
of transformers and underground cables. The replacement of PDN’s components is a time-consuming
process, and thus it is important for DSO planners to look at components that could potentially face con-
gestions in the future to be able to make timely decision regarding network reinforcements. To analyse
the loading of components, two thresholds are considered, namely 75% and 100%. A summary of the to-

tal number of transformers and cables loaded above 75% and 100%, as well as the respective cable length
and the estimated reinforcement costs, is shown in Tab. [6] Voltage violations are not experienced in any
of the simulated scenarios and are thus not further addressed in this section. Comparing the loading of
transformers and cables, it can be seen that transformer overloading is more prominent. For S — Sg;
no cable overloads are recorded and a maximum of two transformers experience overload situations. For
the extreme scenarios Sy and S5, a notable number of transformers and cables experience congestions.
Compared to home charging synchronization at 18:00 (b), synchronization at midnight (a) exerts a sig-
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Figure 5: Aggregated apparent power demand of all three power distribution networks in Frederiksberg. The purple
plot indicates the aggregated baseload from 05:00 on 2020-01-06 to 04:45 on 2020-01-07. The green dashed plot
illustrates the aggregated demand of baseload and EV demand for each charging scenario.

nificant higher impact on the PDNs both in terms of transformer and cable overloading, indicated by a
significant increase in reinforcement costs.

Table 6: Summary of reinforcement costs required to match the increased load in each scenario S;. We indicate the
number of transformers n,,. = n},,n?.,n;., cables n. = nl,n? n?, and total cable length [, = I%,2,13 (km) per
PDN in Frederiksberg that exhibits load exceeding 75% and 100% of the nominal load. The last column contains

an estimate for the total cost C'p (k€) associated with the respective reinforcement.

Tty Ne I (km) Cr (k€)
Load (%) >75 > 100 > 175 > 100 >75 > 100 >75 > 100
S1 51,0 1,0,0 0,0,0 0,0,0 0,0,0 0,0,0 130 22
So 12,7,0 1,1,0 0,0,0 0,0,0 0,0,0 0,0,0 411 43
S3q 6,2,0 1,0,0 0,0,0 0,0,0 0,0,0 0,0,0 173 22
Ssp 7,2,0 1,0,0 0,0,0 0,0,0 0,0,0 0,0,0 195 22
Sia 120,69,32 59,40,9 32,9,0 16,3,0 16.5,53,0 8,2.1,0 7676 3680
Sap 74,52,14  34,21,4 12,2,0  2,0,0 5.1,1.3,0 04,0,0 3878 1333
Ssa 122,69,32 86,67,25 34,13,0 19,4,0 17.6,7.1,0 9.2,33,0 8103 5509
Ssp 112,69,32 54,38,8 21,9,0 11,2,0 10.1,53,0 4.9,1.3,0 6656 2983

To showcase the impact of home and workplace charging, we illustrate in Fig. [6] the loading of four
different transformers in Frederiksberg over the course of 24h, starting at 05:00 on 2020-01-06. Here,
we consider four different examples, starting with no overloading in any scenario (up?er left). Examples
of overloading cause by either home or workplace charging are shown in the bottom left and right plots.
Finally, an example of both workplace and home charging causing overloading is depicted in the upper
right plot. Thus, even though the home charging demanc? is estimated to be significant higher than the
workplace charging demand, synchronized charging at work also contributes to potential congestions.

4 Discussion

Results indicate that even if full EV penetration is reached, uncontrolled charging is not likely to cause
a significant challenge to the urban PDNs of Frederiksberg. The worst-case scenarios, Sy and S5 (and
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Figure 6: Transformer loading of four different 10/0.4 kV transformers in Frederiksberg from 2020-01-06 05:00 to
2020-01-07 04:45. While the red line indicates the capacity threshold of each transformer, the black line illustrates
the baseload. Coloured lines in different shapes indicate the aggregated apparent power demand (Baseload + EV
demand) in each scenario.

respective sub-scenarios), while rare and unlikely, should be taken into consideration if no dampening
mechanisms are introduced to curb excessive demand surges. However, several factors not taken into
alclzc%%llt\I within this work could have a significant impact, that can either reduce or aggravate the load on
the .

Concerning the former, the scenarios introduced in this paper represent extremes both in terms of charg-
ing patterns and control, as well as in terms of the availability of home and workplace charging. There-
fore, results should be taken as illustrative upper bounds for the expected impact on the gric% Regarding
the charging pattern, each charging scenario assumes the same charging behaviour for all EV users. How-
ever, in reality charging behaviour is complex in nature, involves multiple patterns (e.g. daily vs. non-
daily), is subject to different control strategies (e.g. uncontrolled vs. smart-charging), and variable charg-
ing power is likely a critical element. On top of this, future market products offered by charging operators
could add another dimension of complexity by offering potential financial benefits to the customers. Re-
garding charger installation, we assume throughout this paper that all EV owners with access to good
parking conditions, either at home or work, will have access to a charger, which could lead to overes-
timating the number of users with access to charging at those locations. Furthermore, workplace and
housing associations are prime candidates for the utilisation of load sharing solutions in their charging
infrastructure, which should naturally dampen high-demand surges. Last but not least, constraints in
the low voltage PDN may also dampen the impact on the medium voltage PDN, i.e. bottlenecks might
materialize on the low voltage level before any congestions are experienced on the medium voltage level.
In contrast to the above-mentioned factors that will likely dampen demand, we now delve into four
factors that can aggravate demand. First, our simulations are based on present-day numbers of vehicles
and driven distance, which fails to account for the likely growth of number of private cars, as expected
by the Danish authorities [[18]. Second, given the constraints associated with travel records, we assess
the impact of EV charging on the grid based only on normal weekdays data, which covers the days
when high synchronization is most likely to occur. Yet, it is important to note, that high demand could
also occur during weekends or holidays. Third, the impact of public charging is not considered in the
present study. Even in the least impactful scenario of evenly £stributed utilization of public charging
this will add additional load to the power grid. The fourth factor concerns the spatial dispersion of
charging infrastructure and respective connections to the PDN. As previously discussed, the likelihood
of global synchronization of demand on the entire grid is rather low. Yet, congestion could also arise
from excessive concentration of charging in areas with limited number of transformers and reduced
cable connections, leading to hotspots of demand that could locally overload the power grid.
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5 Conclusion

This paper probes the impact of full electrification of private vehicle utilization on the urban medium
voltage PDN of Frederiksberg (Denmark), both in terms of transformer and cable loading, as well as
voltage deviations. Making use of Danish travel survey data, we estimate the future EV demand for home
and workplace charging, that will have to be served by the PDN. To identify potential congestions in the
PDN, we devise five different charging strategies comprising different charging patterns and degrees of
control. We simulate the impact of each charging scenario on top of the present base load, selecting
40 weekdays of peak loading within the system. Three of the five charging scenarios focus on highly
coordinated start of charging to account for a potential high level of charging synchronization in the
future when applying smart charging to achieve a certain objective.

The results indicate that transformer overloading is the primary concern for the analysed PDN, with cable
overloading being less prominent and no detected voltage violations. Moreover, uncontrolled charging
does not pose a massive concern for the PDN, mostly due to a low coincidence factor of charging.
Furthermore, even with high charging synchronization, no severe impacts are to be expected when EVs
are not charged on a daily basis. However, rare events involving either time-synchronization for daily
charging patterns, or day- and time-synchronization for non-daily charging patterns could stress the
grid and lead to severe overloading of transformers. Finally, due to a higher coincidence factor of home
charging at midnight, synchronization during the night could potentially pose a bigger challenge to PDNs
compared to the synchronization at peak loading times in the evening.

Our future work will focus on analysing the impact on the low voltage PDN, which may be subject
tc})1 more significant challenges from electric vehicle synchronization, especially with regard to home
charging.
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