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Summary 

The state of warranty (SOW) is a meta-state that describes qualitatively the warranty fulfilment level of an electric 

vehicle. All the relevant warranty information is synthesized in one merit while maintaining the level of detail 

through the qualitative sub-states. The developed SOW is calculated with a rule-based logic of an expert system 

that evaluates the quantitative value of three sub-states: the remaining warranty, the remaining health and the 

remaining useful warranty. 
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1 Introduction 

The sales of electric vehicles is increasing steadily a 40% each year [1] and the number of cars with advanced 

warranty periods is increasing accordingly. The more electric vehicles sold, the higher the repercussion of 

maintenance activities under warranty is for electric vehicle manufacturers. An inappropriate management of the 

warranty could lead to a systematic replacements of battery systems under warranty, which could lead to 

undesired additional costs for any manufacturer. Consequently, many efforts are spent on this regard, mainly by 

implementing a maintenance methodology (reactive, preventive and predictive) that fits better with the reality of 

each original equipment manufacturer (OEM).  

The simplest maintenance is the reactive maintenance [2]. It consists of scheduling fixed maintenance activities 

and only act in case of a failure in the vehicle. Therefore, interventions out of the scheduled plan would only be 

done if there is already something that requires reparation. These interventions are scheduled immediately after 

receiving the feedback (already broken). The most relevant features of this kind of maintenance are the date of 

the beginning of life and the dates of scheduled maintenance events. 

Nowadays, the most common maintenance is the preventive maintenance [3]. It consists of diagnosing the actual 

state of the vehicle and acting once some thresholds are overcome in terms of damage. The maintenance activities 

are scheduled based on the state of the vehicle itself. Interventions are scheduled before any failure happens, but 

after certain thresholds of damage are reached. The interventions are scheduled in a short time period after 

receiving the feedback (with serious damage but still working). The most relevant features are the warning 

thresholds of the health indicator(s) and the observed/estimated state of health (SOH). 
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The maintenance with the highest interest from specialized enterprises is the predictive maintenance [4]. It 

consists of predicting the failures before any real damage is accumulated. The evolution of health indicators of 

the different elements of the vehicle are observed from the beginning of life. The recorded data is recurrently 

analyzed using aging models [5] and prognosis algorithms [6]–[8]. The results from those analysis are used to 

foresee and prevent failures in early states of damage. Interventions can be scheduled before happening any 

failure and before observing any significant damage. The interventions are scheduled in a long time period after 

receiving the feedback (without any serious damage). The most relevant features are the expected lifespan (the 

prior) and the prognosed remaining useful life (RUL). 

The actual maintenance schedules of electric vehicles are mostly done in a mix of reactive and preventive way 

or in a mix of reactive, preventive and predictive way. The maintenance activities of critical components such as 

the battery system are done in a preventive or predictive way, while the rest non-critical components are done in 

a reactive way. Consequently, the maintenance scheduling of electric vehicles must deal with a multi-component, 

multi-maintenance-methodology scenario. 

This study tackles to the need of easing that multi-maintenance methodology scenario through the 

implementation of a proposal on the most critical element of an electric vehicle, the battery system. This study 

proposes a new qualitative meta-state of the battery system, the state of warranty (SOW). The SOW synthesizes 

the most relevant quantitative indicators (sub-states) of each of the maintenance methodologies in one merit. It 

allows to simplify the multi-maintenance methodology into a global and unique maintenance methodology. 

Additionally, this SOW provides the milestone to develop a synthesized platform for the multi-component 

maintenance (a synthesized SOW of the electric vehicle determined by the estimated SOW of each of the 

components). 

The paper is structured as following. The proposal is explained in detail in section 2. Then, the different tools 

required to determine the value of each of the quantitative indicators or sub-states used to estimate the SOW are 

described in section 3: the SOH estimator, the prior and the RUL prognosis. After that, the results are shown and 

discussed in section 4. Finally, the conclusions are drawn in section 5. 

2 State of warranty 

The needs of electric vehicle manufacturers to plan maintenance activities under the warranty period has 

motivated the development of a new state: the state of warranty (SOW). The SOW is an off-board state that 

determines the warranty fulfilment level. This state provides global understandable insight of the warranty state 

of an evaluated component while providing detailed and complex information about it if required. 

The understandable insight is given by qualitatively determining the fulfilment level of the given warranty in a 

user-friendly color code. The detailed and complex information is given by quantifying in three sub-states related 

to the most relevant features of each of the different types of maintenance activities: 

• The remaining warranty (RW) for the reactive maintenance. 

• The remaining health (RH) for the preventive maintenance. 

• The remaining useful warranty (RUW) for the predictive maintenance. 

The qualitative value that defines the SOW is calculated with an expert system. This calculus is done off-board. 

The rule-based logic of the applied expert system determines the SOW value based on the previously determined 

quantitative sub-states: the remaining warranty, the remaining health and the remaining useful warranty. That 

rule-based logic is disclosed in Table 1. 
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Table 1: SOW rule-based logic. 

SOW RW RH RUW Severity Description 

 
>0.05 >0.75 >0.5 The warranty fulfilment level is correct. 

 
<0.05 >0.75 >0.5 

The warranty fulfilment level is correct, 
but the end of warranty is close. 

 
- >0.75 0.5> RUW >0.4 

ATTENTION! Predicted 1 additional 
replacement. Early advice. 

 
- 0.75>RH>0.5 0.5> RUW >0.4 

ATTENTION! Predicted 1 additional 
replacement. Middle advice. 

 
- 0.75>RH>0.5 0.4> RUW >0 

ATTENTION! Predicted 1 additional 
replacement. Late advice. 

 
- 0.5>RH>0 0.4> RUW >0 

DANGER! Predicted 1 additional 
replacement. Irreversible damages. 

 
- - 0 

DANGER! Predicted 2 additional 
replacement. 

 
- 0 - DEATH! The battery has reached the EOL. 

 
¿? ¿? ¿? 

Undefined scenario. Something 
unexpected is happening. 

2.1 Remaining warranty (RW) 

The remaining warranty is the simplest sub-state. It is linked to the reactive maintenance and refers to the 

warranty statement itself. It determines how much time of the warranty has been consumed and how much is still 

available. It is common to see warranties in form of kilometrage or lifespan. 

This state aims at providing information about the closeness of the end of the provided warranty. 

The value range of this state is defined with 0 and 1. Value equal to 1 represents the beginning of the warranty, 

i.e., all the warranty is still available. And 0 represents the end of the warranty; the warranty has been completely 

consumed. 

This paper proposes to have four events of interest that describe this state. Two of those four events, first and 

fourth, correspond to the beginning and the end of warranty, respectively. Both determine the saturation levels of 

the proposed state since there is no interest on quantifying this warranty beyond those limits. The other two 

proposed events, second and third events, are warranty states where 5% and a 1% of the total warranty remain 

available. These two values light up the advice state and alarm state, respectively. 

Once the events are determined, it has been defined how to fit them inside the 0 to 1 range. For that aim we 

proposed to use a first order linear equation for the whole range. 

Additionally, this paper proposes a colour for each event, see Figure 1. The first event (RW = 1), the green colour 

(in RGB logic [0,1,0]), represents the starting point of the warranty. The second event (RW = 0.05), the orange 

colour (in RGB logic [1,0.832,0.212]), tells us that there is only a 5% of the total warranty remaining. The third 

event (RW = 0.01), the red colour (n RGB logic [1,0,0.153]), tells us that there is only a 1% of the total warranty 

available. The fourth event (RW = 0), the black colour (in RGB logic [0,0,0]), represents the end of the warranty 

period (all the warranty has been already consumed). 
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Figure 1: Proposed colour-map of the remaining warranty. 

2.2 Remaining health (RH) 

The remaining health is linked with the most common maintenance, the preventive maintenance. It refers to the 

present SOH and quantifies its deviation from the prior and the closeness with the end of life (EOL). The aging 

behaviour of a system is prone to suffer changes from design to real life. The changes could come from common 

changes on the operating conditions (differences between the expected ones and the real ones), from a deficient 

description of the expected aging behaviour (an inaccurate aging model will give as a result an inaccurate result) 

or form unexpected use/manipulation of the asset by the end user of the system. 

This state has two objectives. Firstly, it places the present SOH in between the expectation and the EOL to rapidly 

check the SOH in a proper warranty context (the SOH estimation as itself has low information regarding the 

warranty unless is placed in a proper context). Secondly, the remaining health shows the closeness to the 

appearance of a sudden failure (in this study, the EOL) so as to inform the vehicle manufacturer about the need 

of a preventive maintenance action. 

The value range of this state is defined with 0 and 1. The 1 represents that the estimated SOH is equal or higher 

than the expected one at the present instant. And 0 represents that the EOL has been reached. 

This paper proposes to have three events of interest that describe this state. Two of those three events, first and 

third events, are the expected SOH (at the present instant) and the EOL, respectively. Both determine the 

saturation levels of the proposed state since there is no interest on quantifying it beyond those limits. In terms of 

diagnosis, if the present SOH is above the expected one, it means that the accumulated damage is lower than the 

expected one and, therefore, preventive actions are not required. At the same time, if the present SOH is below 

the EOL, it means that the warranty has not been fulfilled (a failure has already happened). 

The second event of interest is the SOH value that triggers the alarms of the closeness of a sudden failure, the 

SOH threshold that forces to do a preventive maintenance. The value of this second event is the SOH value that 

defines the EOL plus 3%. This value is assumed to be big enough to give room for actions, but small enough not 

to light up hasty alarms. 

Once the events are defined, the rest of the values of this 0 to 1 range need to be defined. We proposed to use a 

piecewise-defined function built with first order linear equations, see Eq. (1). 

RH𝑘 =

{
 

 
1 SOHk > SOH𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑘

𝑎1 + ∆SOH1 𝑘 ∙ 𝑏1
𝑎2 + ∆SOH2 𝑘 ∙ 𝑏2

SOHevent2 > SOHk ≥ SOH𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑘
EOL > SOHk ≥ SOHevent2

0 SOHk < EOL

 (1) 

Where the RH𝑘  is the remaining health at instant k ; the SOHk  is the estimated SOH at instant k ; the 

SOH𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑘 is the prior at instant k; the SOHevent2 is the defined warning SOH threshold (EOL + 3%); the 
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∆SOH1 𝑘 is the relative difference between the estimated SOH and the expected SOH having as reference the 

difference between the expected SOH and the SOHevent3 at instant k; the ∆SOH2 𝑘 is the relative difference 

between the estimated SOH and the EOL having as reference the difference between the EOL and the SOHevent2 
at instant k; the 𝑎𝑥 and 𝑏𝑥 are the variables of the linear function in between the defined events, being x 1 and 

2. 

The proposed Eq. (1) suffers from incongruency when the SOH𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑘 < SOHevent2. It is only used from the 

beginning of life to the instant the expectation reaches the second event. In this situation, the warranty is about 

to expire so, the expectations are close to the failure threshold (the EOL). The remaining health losses its warning 

purpose since the prior already warns about it from the beginning of life. As result, the only purpose left for the 

remaining health is to contextualize the estimated SOH, which is done with a modified version of Eq. (1), see Eq. 

(2). 

RH𝑘 = {

1 SOHk > SOH𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑘
𝑎3 + ∆SOH3 𝑘 ∙ 𝑏3 EOL > SOHk ≥ SOH𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑘

0 SOHk < EOL

 (2) 

Where the ∆SOH3 𝑘  is the relative difference between the estimated SOH and the expected SOH having as 

reference the difference between the expected SOH and the EOL at instant k; the 𝑎3 and 𝑏3 are the variables 

of the linear function in between the EOL and the expected SOH. 

This paper proposes a colour for each event, see Figure 2.A. The first event (RH = 1), the green colour (in RGB 

logic [0,1,0]), represents that the estimated SOH is equal to the expected or higher. Everything goes well. The 

second event (RH = 0.5), the red colour (in RGB logic [1,0,0.153]), represents that the EOL event is close (at 3% 

of SOH). An alert is lighted up and preventive actions are required not to suffer a failure of the vehicle before the 

warranty period. The third event (RH = 0), the black colour (in RGB logic [0,0,0]), represents that the EOL has 

already reached before the warranty period. 

For the period of life that the expected SOH is lower than the one defined at the second event (EOL+3%), an 

alternative proposal is done, see Figure 2.B. In this period of the warranty, the second event has no sense (it has 

been already overcome), and it is taken from the colour map. As consequence, the red colour disappears and a 

colour map of green and black is left. 

 

A) 

  

B) 

Figure 2: Proposed colour-map of the remaining health. A) From the beginning of life until the expected SOH reaches the 

EOL +3%. B) From when the expected SOH is EOL +3% to the EOL. 
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2.3 Remaining useful warranty (RUW) 

The remaining useful warranty is linked with the most interesting maintenance, the predictive maintenance. It 

requires the future SOH and refers to the remaining warranty from the present to the moment where the EOL 

threshold is reached; it refers to the RUL. It quantifies the deviations between predicted and expected RUL. It 

gathers the initial expectations, calculated with the prior and the prognosed value, with the recorded SOH 

estimations. By comparing expectations and predictions, the remaining useful warranty represents the 

compliance of the stated warranty on the fulfilment of the application’s operating specifications. 

The objective of this state is to inform the vehicle manufacturer about the warranty state way before its non-

fulfilment. Thanks to this, the remaining useful warranty gives enough room for action to the vehicle 

manufacturer to modify the battery operation and achieve the designed warranty in absence of failure. 

The value range of this state is defined with 0 and 1, being 1 the fulfilment of the theoretical expectation and 0 

the non-compliance of the warranty in half of the defined warranty period. 

This paper proposes to have four events of interest that describes this state. The proposed first event is the 

theoretical remaining useful life based on the expectations described with 1. This event determines if the 

expectations are fulfilled or higher. We propose to neglect the states that represent higher compliance levels than 

the calculated prior since the aging behaviour is always expected to suffer negative deviations (higher 

degradation). Therefore, it is not likely to have states beyond this one. 

The proposed second event is the RUL defined on the warranty. It usually consists of the value obtained by 

applying a reductive security margin to the theoretical RUL. Manufacturers used to add a security margin to their 

prior because of the uncertain level on the real application’s operating conditions. In case it coincides with the 

theoretical RUL (no security margin is applied), the first and the second events would be the same. Therefore, 

there would be just one event that represents both, the theoretical expectations and the defined warranty. 

The proposed third event is the non-compliance of the warranty in 80% of the defined warranty period. It is 

represented by 0.4. This event tries to represent the state that lights up all the alerts. It becomes mandatory to act 

in order to correct the deviation suffered on the given warranty. 

The proposed last event is the non-compliance of the warranty in half of the defined warranty period. This event 

defines the border where the battery replacement goes from 1 to 2 in order to keep the warranty. Remaining useful 

warranty values below this threshold could lead to a catastrophe to the battery manufacturer. 

Once the events are defined, the rest of the values of this 0 to 1 range need to be defined. We proposed to use a 

piecewise-defined function built with first order linear equations, see Eq. (3). 

RUW𝑘 = {

1 lifespank > lifespanevent1
𝑎1 + lifespank ∙ 𝑏1
𝑎2 + lifespank ∙ 𝑏2

lifespanevent1 > lifespank ≥ lifespanevent2
lifespanevent2 > lifespank ≥ lifespanevent4

0 lifespank < lifespanevent4

 (3) 

Where the RUW𝑘 is the remaining useful warranty at instant k; the lifespank is the predicted lifespan at instant 

k; the lifespaneventx is the lifespan value related with the event x, being x 1, 2, 3 and 4; the 𝑎𝑥 and 𝑏𝑥 are the 

variables of the linear function in between the defined events, being x 1 and 2. 

This paper proposes a colour for each event, see Figure 3. The first event (RUW = 1), the green colour (in RGB 

logic [0,1,0]), represents that the predicted lifespan is as the expected or higher. Everything goes well. The second 

event (RUW = 0.5), the orange colour (in RGB logic [1,0.832,0.212]), means that the warranty-lifespan and the 

predicted lifespan are the same. Since slight deviations can incur in the non-compliance of the warranty, a warning 

is set up. The third event (RUW = 0.4), the red colour (n RGB logic [1,0,0.153]), represents that the warranty is 

not fulfilled a 20% earlier than the defined on the warranty. An alert is lighted up. The fourth event (RUW = 0), 
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the black colour (in RGB logic [0,0,0]), represents the inflection point where the compliance of the warranty will 

come from 2 replacements of the whole battery system inside the warranty period. It represents a catastrophe. 

 

Figure 3: Proposed colour-map of the remaining useful warranty. 

3 Required tools 

The SOW estimation can only be done if some other elements are available along with the SOW estimator. The 

SOW cannot be estimated unless there is an on-board SOH estimator, the prior data is previously generated and 

an off-board RUL prognosis is already available. 

3.1 SOH estimator 

The SOH is the state of a component that describes its health status. It is commonly used as the unique health 

indicator due to its level of synthesis. The SOH of a battery system is almost always represented by the relative 

dischargeable capacity at the present (𝐶𝑝𝑟𝑒𝑠𝑒𝑛𝑡) in reference to the nominal capacity (𝐶𝑛), see Eq. (4). 

𝑆𝑂𝐻 =
𝐶𝑝𝑟𝑒𝑠𝑒𝑛𝑡
𝐶𝑛

 (4) 

The SOH estimator of a battery system requires to estimate the dischargeable capacity at the present time instant. 

It can be directly estimated by undergoing a complete discharge process. Nonetheless, it is not common to 

undergo a complete discharge periodically in almost any real-life application of an electric vehicle. As 

consequence, indirect estimation methods are applied. 

There are many different options available to do indirect estimation of the dischargeable capacity of a battery 

system [9]. One of the most interesting methods consists of estimating the dischargeable capacity from the data 

generated in partial charges. This study gets advantage of the already integrated SOH estimator in an electric 

vehicle, see [10]. The obtained current profile of the partial charge is integrated in small time intervals so as to 

obtain the derivative profile of the capacity. This data is used along with a previously built model to get the SOH 

estimation. 

The obtained on-board SOH estimations are used to directly estimate the remaining health. At the same time, the 

performed SOH estimations from the beginning of life (BOL) up till now are used to estimate the remaining 

useful warranty. 

3.2 The prior 

The prior or expectation refers to the already obtained knowledge about the electric vehicle itself before it starts 

working; it is the knowledge available at the design phase of the electric vehicle. In this study, there are two 

different types of prior: the aging evolution and the warranty definition. 
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The prior related with the aging evolution consists of the data that describes the aging behaviour. This knowledge 

is obtained by predicting the aging behaviour at the most probable operating conditions from the BOL to the 

EOL. For that, there are four features that need to be defined. 

Firstly, the most probable operating conditions is speculated. These operating conditions are established based 

on the application and battery characteristics. These characteristics are the following ones: 

- The most probable power profile. 

- The charge current rates. 

- The operation limitations (often imposed by the battery management system (BMS)). 

- The room environmental conditions. 

- The voltage response of the battery system. 

- The sizing characteristics of the battery. 

Secondly, the EOL is specified. The EOL is an event of interest in the lifespan (in form of years or kilometrage) 

of the battery that describes the fulfilment of the application’s operational specifications. It is common to use a 

fixed threshold such as the 80% of the SOH (20% of capacity decay) or the 200% of the ohmic resistance (100% 

of resistance increase). It is also possible to calculate the EOL based on the operational specifications (application 

oriented) [11]. 

Thirdly, the aging behaviour of the battery at the most probable operating conditions is described. This is usually 

done with an aging model. There are many aging models available in the literature [12], [13]. The accuracy of 

the model itself will lead to a lower or a higher uncertainty on the actual warranty definition (and more or fewer 

problems on the given warranty), but all of them are suitable options because they describe the aging behaviour, 

i.e., what this study needs. 

Finally, the SOH evolution from the BOL to the EOL considering the most probable operating conditions is 

predicted, see an example in Figure 4. 

 

Figure 4: Example of the aging evolution of a battery system. 

The prior related with the warranty definition consists of determining the lifespan that covers the warranty in 

terms of years and kilometrage. The manufacturers usually use the prior of the aging evolution to define these 

values. The theoretical lifespan is estimated by observing the moment the EOL is reached in the prior (the prior 



 

35th International Electric Vehicle Symposium and Exhibition 9 

referring to the aging evolution). Then, the warranty lifespan is set up according to the uncertainty level that the 

calculated theoretical lifespan value has. 

The prior knowledge related to the aging behaviour is required to estimate the remaining health and remaining 

useful warranty. The prior knowledge related with the warranty definition, on the other hand, is used on the three 

sub-states: on the remaining warranty, on the remaining health and on the remaining useful warranty. 

3.3 RUL prognosis 

The RUL represents the time or kilometres the electric vehicle can still be operative. The prediction of this merit 

as well as the uncertainty level on the given prediction commonly defined as a probability density function (pdf) 

are fundamental elements on any predictive maintenance. The actions on estimating both (the prediction and its 

uncertainty) is done by the prognosis. 

Simplifying the RUL prognosis to the extreme, it can be defined as a trend search algorithm that is applied into 

the recorded SOH estimations. The obtained trend and its uncertainty are propagated until the EOL event in order 

to calculate the RUL and its uncertainty. The trend search algorithm can integrate prior knowledge of the trend 

itself (the prior referring the aging evolution) as a bias. This bias of the prognosis activity can reduce greatly the 

uncertainty on the RUL prediction if the trend underneath the data (the recorded SOH estimations) is similar to 

the trend on the bias. This study uses the prior that refers to the battery SOH evolution as the bias. 

The RUL prognosis requires access to the recorded on-board SOH estimations. This is a must. Without this data, 

the RUL prognosis cannot be done, and therefore, any predictive maintenance is out of the scope. The RUL 

prognosis requires to have a SOH estimator on-board and a recorded device that provides the tools to have access 

to this data afterwards off-board.  

Once data is accessible, a RUL prognosis algorithm can be applied to this data. There are plenty of different 

algorithms that can be used to predict the RUL [14]. The current study profits the already tested and validated 

prognosis algorithm based on a stochastic particle filter [7], [8], see example in Figure 5. 

 

Figure 5: Example of a prognosis. 

A stochastic particle filter is based on Monte Carlo algorithm. It consists of generating randomly a finite number 

of particles to find the posterior distribution given a noise process and some partial observations. It allows to 

filter the noise that hides the actual trend underneath the data. Once the trend is obtained and there are no more 
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observations (SOH estimations), the trend and its distribution are propagated until the EOL is reached. As results, 

the RUL and its pdf are predicted [7]. 

The predicted off-board RUL values are used to estimate the remaining useful warranty. 

4 Results and discussion 

The SOW estimation proposal has been applied into an artificially built example. Firstly, the example has been 

characterized in order to generate the prior knowledge. The selected battery system is placed on a heavy-duty 

electric vehicle with a liquid based thermal management system (the batteries are supposed to operate at 25ºC). 

This virtual electric vehicle does a defined route (125km with a specific orography) on a specified time schedule 

(320 days per year) during at least a specific lifespan (at least the 10 years of the imposed warranty). As result, 

the specifications of the operating conditions of the battery system are defined (the maximum required power 

rates based on the orography, the minimum dischargeable energy at the end of life of the battery and a minimum 

lifespan). Considering all this, the battery system has been sized and the prior knowledge has been generated. 

This virtual battery system has been designed in 5 parts, containing 15 sub-parts each. The obtained aging 

evolution of the system under the designed operation conditions gives as result a lifespan of 12 years (see the 

prior of Figure 6). 

 

Figure 6: Aging evolution and recorded SOH estimations of the sized battery system for the electric bus. 

After the design and sizing activity (and the prior generation), the designed battery system is constructed and 

operated based on the designed use case (all this is done in a virtual way and the data is artificially generated). 

The operation of the battery system provides on-board SOH estimations. It has been generated 1 year of on-board 

SOH estimations for each sub-part, see the measurements of Figure 6. In order to simplify the example, all of the 

sub-parts have the same SOH evolution versus time. 

Once SOH estimations of real operation of the battery are available (in this paper this data is artificially generated), 

off-board analyses such as the prognosis of the SOH evolution can be done. For this paper, a prognosis algorithm 

based on a particle filter [7] has been developed in python. The algorithm is applied to the artificially generated 

SOH estimations and the obtained prior from the sizing activity of the analysed electric vehicle. The aging 

evolution from the observed first year onwards is then predicted (the worst case among all the sub-parts), see PF 

prediction in Figure 6. Based on the predicted aging evolution, the final lifespan is predicted to be 10.5 years (a 

RUL of 9.5 years). 
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Finally, the proposed approach to estimate the SOW is applied (once the prior knowledge, the SOH estimations 

and the RUL prognosis are available). The SOW estimation of every sub-part is “green”. The results of the 

estimated SOW are shown in Figure 7. 

 

Figure 7: SOW estimation of each of the battery modules in the battery system. 

The remaining warranty of the battery system after 1 year of operation is 0.9021. 

The remaining health of each of the sub-parts is 0.9840. The SOH values of the different sub-parts are the same, 

so the remaining health of each of the subparts is also the same, see Figure 8 (left). 

The remaining useful warranty is shown in Figure 8 (right). Each sub-part has a slightly different value due to 

the randomness of the applied prognosis algorithm. The obtained remaining useful warranty values goes from 

0.5153 to 0.5649. 

  

Figure 8: Remaining warranty (left) and remaining health (right) of each of the battery modules in the battery system. 

The fact that the SOW is “green” indicates that the warranty goes well. If analysing the sub-states in detail, the 

first thing that stands out is that both, the remaining health and remaining warranty, are high (above 0.9). The 

other aspect that stands out is that the remaining useful warranty is not the same for all the sub-parts as in the rest 

of the sub-states, even though the gathered data of each sub-part are completely the same. This value changes 

from sub-part to sub-part. 
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Firstly, the remaining warranty is high since it has passed just 1 year from the 10 years of operation that the 

battery system must accomplish. The battery system can be considered almost new, and so is indicating this sub-

state. 

Secondly, the remaining health is high because of two reasons. The first reason is that the estimated SOH is only 

slightly lower than the expected SOH at the date of the estimations. The last SOH estimation is 97.8% and the 

expected SOH value at the date that this SOH estimation was done is 98.2%. There is only 0.4% of difference 

between the SOH expectation and the SOH estimation. The second reason is that there is still a huge difference 

between the actual SOH and the EOL. The difference between the estimated SOH and the EOL is 17.8%. The 

high remaining health indicates that the experienced damage on the batteries is close to the expected one and that 

in case predictions were far from optimistic, there would still be room for action. 

Thirdly, the remaining useful warranty is not unique for all the sub-parts because of the characteristics of the 

applied prognosis algorithm. The particle filter is based on finite random simulations, which leads to slightly 

different results even though sharing the same data. The obtained remaining useful warranty values between 0.51 

and 0.56 indicates that the predictions are worse than the expected one (below 1) but that the predictions are still 

respecting the imposed warranty (above 0.5). The results warn about the need of analysing the expectations and 

the prior. The expected operation conditions could not be the same as the real ones, generating like this a deviation 

between the estimated SOH and the expected SOH. Another cause could be that the prior of the aging evaluation 

itself is not correct, which will require to update the used aging model and act accordingly in order to fulfil the 

warranty satisfactorily. 

To sum up, the results show that the warranty of 10 years is expected to be fulfilled if everything goes as it has 

gone during the observed first year. The worst case (the sub-part with the lowest predicted lifespan) shows a 

predicted lifespan of 10.5 years, which is above the imposed warranty of 10 years. 

5 Conclusions 

This paper has proposed a meta-state that synthesizes qualitatively the relevant information about the warranty 

fulfilment. For that, three sub-states have been defined and qualitatively quantified: the remaining warranty, the 

remaining health and the remaining useful warranty. The remaining warranty represents the relative passed time 

of the warranty respect to the total warranty. The remaining health represents the relative health respect to the 

expectations and EOL. The remaining useful warranty represents the relative RUL respect to the warranty 

definition, the expectations and the event where the battery system has to be replaced twice. The qualitative 

values of these three sub-states (in a range of 1 to 0) are evaluated by an expert system to determine the SOW 

that is represented in a colour code. 

The applicability of a SOW estimator is totally dependent to the availability of three elements: an on-board SOH 

estimator (and a way of accessing the generated data with this estimator), a prior definition of the most probable 

aging evolution (and the most probable lifespan of the system) and an off-board RUL prognosis algorithm. It is 

not possible to develop a SOW estimator unless these three elements are available. The prior knowledge generates 

the constrictions to relativize these sub-states. This is indispensable to get qualitative values. The SOH 

estimations are the health observations themselves. This is necessary to do any off-board analysis of the health, 

and therefore, of the warranty. The RUL prognosis provides the SOH predictions. This is indispensable to address 

properly the warranty. In this proposal, the uncertainty of the given prediction is neglected. The SOW and the 

remaining useful warranty are indicators and not final decision-making actions and therefore, the integration of 

the uncertainty is considered to be necessary in a decision-making level rather than in a state estimation (diagnosis) 

level. 

The results have shown some strong points of the proposed state. The SOW is able to show in a user-friendly 

manner if there are reasons to worry in terms of warranty fulfilment. Besides, its three sub-states provide enough 

insight to understand completely how healthy the system is, respect to what it should be, and how difference the 

final lifespan will be respect to the expected one (and imposed one). 
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One of the most interesting uses of this state is the planification of maintenance activities. The SOW synthesizes 

the most relevant features of each of the different maintenance methodologies. Therefore, it can be used as the 

main indicator for maintenance scheduling and develop an improved predictive maintenance. 

Another strong argument for the SOW is the detection of failures and weak points of the system. The tracking of 

the fulfilment of the warranty provides the chance to apply data-analysis, which could lead to detect defect 

components, errors on prior knowledge, weak points, harmful actuations, etc. To sum up, it can be used as the 

basis of a continuous improvement process of the system. 

As for the future, we are currently researching in the diagnosis assessments that will support the SOW estimator. 

Those assessments are based on the historic data of the operating conditions and they will give insight in the 

reasons behind deviations of the expectations and/or prior knowledge. 
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